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Motivation

In many empirical applications, the target object is in a union bound
0 € [minA;p, maxA
beB tb beB u,b
3
® 0 is the target object A Aus
® (ApAy) € R2 8l is unknown but estimable 3

Ar2 Au2
® 3 is the set of indices: known and finite
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The goal of this paper: Construct a confidence interval for 0
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Manski and Pepper (2018, REStat), Rambachan and Roth (2023, REStud)
What if the parallel trends assumption does not hold?

3/43



Example: Difference in Differences
Manski and Pepper (2018, REStat), Rambachan and Roth (2023, REStud)
What if the parallel trends assumption does not hold?

* Treated
L ¢ Untreated

-2 -1 0 1
Time

Units with D = 1 receive a treatment at t = 1
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Time
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Example: Difference in Differences
Manski and Pepper (2018, REStat), Rambachan and Roth (2023, REStud)
What if the parallel trends assumption does not hold?

* Treated
L ¢ Untreated

0 =ATT € Lr;]el?%/\e’b' T:Z;(A“'b
where B={—(T—-1),..,T—1,T},

y—=MA,  ifb=—(T-1),..0,

Arn=A =
Lo fub {'H—MA,,T ifb=1,..T
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Example: Regression Discontinuity Design

Kolesar and Rothe (2018, AER)
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Example: Regression Discontinuity Design

Kolesar and Rothe (2018, AER)

Outcome

Score

Treatment D = 1{X > k} with running variable X
Let #(X) = E[Y | X]. The ATE at the threshold is

0= E[Y(1)~ Y(0) | X =0] = limu(x) ~ lim s (x)
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Example: Regression Discontinuity Design

Kolesar and Rothe (2018, AER)

Outcome

Score

Estimate 6: local OLS of Y on m(X) with X € [k — h, k + h] where

m(x) = (1{x > k},1{x > k}(x—k),..., 1{x > k}(x — k)P,
Lx—k,...,(x—k)P)
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Example: Regression Discontinuity Design

Kolesar and Rothe (2018, AER)

Outcome

Score

Assumption: bounds on specification errors at the threshold

lim A < A(XN], [limA < A(X
[lim ()| < max () | lm ()| < max |A()
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Examples

® Difference-in-Differences: Manski and Pepper (2018, REStat), Rambachan and
Roth (2023, REStud), Hasegawa, Small, Webster (2019, Epidemiology), Ye, Keele,
Hasegawa, and Small (2023, JASA), Ban and Kédagni (2023, WP)

® Regression Discontinuity Design: Kolesar and Rothe (2018, AER)

® Misspecification Analysis: Masten and Poirier (2021, ECTA), Apfel and Windmeijer
(2022, WP), Stoye (2022, WP)

® Bunching and Income Elasticity: Blomquist, Newey, Kumar, and Liang (2021, JPE)

® Sign Congruence: Brinch, Mogstad, Wiswall (2017, JPE), Kowalski (2022, RES),
Kim (2024, WP), Molinari, Miller, Stoye (2024, WP)

® Mediation Effect: van Garderen and van Giersbergen (2024, REStat)
® Instrumental Variables: Machado, Shaikh, and Vytlacil (2019, JoE)
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Main Contributions

| propose a novel Cl based on modified conditional inference
® Valid: Cl covers 8 with prob. > 1 — « under mild regularity conditions

® Short: higher power than existing methods under a large set of DGPs
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Compare with Existing Procedures

My method improves upon existing valid procedures

My Simple Hybrid Adj. Boot.
Adjust for union v X X v
/n conv. rate to id set v v v X

® Simple Cl: Kolesar and Rothe (2018, AER), among others
® Hybrid Cl: Rambachan and Roth (2023, RES)
® Adjusted Bootstrap: Ye, Keele, Hasegawa and Small (2023, JASA)
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Contributions to Other Related Literature

Intersection Bounds & Moment Inequalities

Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Rosen (2008), D. Andrews and
Guggenberger (2009), D. Andrews and Soares (2010), Chernozhukov, Lee, and Rosen (2013), D. Andrews
and Shi (2013), Bugni, Canay and Shi (2015), among others

® This paper complements the intersection bounds CEEEEED
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® This paper complements the intersection bounds CEEEEED
Directionally Differentiable Functions
Hirano and Porter (2012), Fang and Santos (2019), Fang (2018), Ponomarev (2022), among others

® This paper sheds light on inference of direct. diff. func. w/o convex null
Conditional Inference
I. Andrews and Mikusheva (2016), I. Andrews, Roth and Pakes (2016), |. Andrews, Kitagawa, McCloskey
(2021, 2023), Rambachan and Roth (2023), among others

® This paper widens the use of the conditional inference technique
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Outline

© Inference Procedure

@ Simulation

© Empirical lllustration

@ Conclusion
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Outline
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Setting

The target object

6 € |minAyp, maxA
beB 4b beB wb
where A, and A, are |B|-dimensional vectors

Assume that /A\g, /A\u are asymptotically normal

X[*/\g d
A N (0,2
ﬁ(Au—AJ* 0.%)

Goal: construct a uniformly valid and short Cl for 6

liminf inf inf PecCh)>1—u
n PEPOE[Amin,Aumax]
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A Simple Example

Consider the simplest possible case where
6 € [min{A1,A2}, max{A1,A2}]

with
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A Simple Example

Construct the Cl by inverting tests of the hypothesis

Ho : min {A1, A2} <0 < max{A1, Az}
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A Simple Example

Construct the Cl by inverting tests of the hypothesis

Ho:min{A; — 0,12 — 0} <0 <max{A; —0, A, — 6}

o — 0

Test stat is
7

The Cl is .
min
T(0)<c(6)

|

0,

(0) = max{min{?xl —0, Ay — 6}, min{Gf)A\l,Qf)A\g}}

_ max 9}
T(0)<c(9)

13 / 43



A Simple Example
Construct the Cl by inverting tests of the hypothesis

Ho:min{A; — 0,12 — 0} <0 <max{A; —0, A, — 6}

w

Test stat is R R - -
7(6) = max{min{31 — 0,32 — 0}, min{6 — 11,0 — A5} }
The Clis [A min 0, max 9}
T(0)<c()  T(0)<c(0)

Current practice: ¢sm = ®~1(1— %), 1.96 for a = 0.05
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A Simple Example - Modified Conditional CV

To improve upon ¢*'™, | propose a modified conditional cv
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A Simple Example - Modified Conditional CV

To improve upon ¢*'™, | propose a modified conditional cv

More fav.

Valid

Short

1. Define less and more favorable DGPs

2. Construct a conditional cv

3. Modify the conditional cv

Less fav.

Valid
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A Simple Example - Step 1 More & Less fav. DGPs

Infeasible Critical Value o = 0.05

0 More Fav. 2 4 LessFav. 6
‘/\1 - /\2|
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A Simple Example - Step 1 More & Less fav. DGPs

Infeasible Critical Value o = 0.05

0 More Fav. 2 4 LessFav. 6
‘/\1 - /\2|

If Ay = Ay, the infeasible Cl is [man{ﬁl,xz} — 1, max{Ay, A} + 1]

® we can use [Xl ~1.96, Ap + 1.96] or [X2 ~1.96, Ay + 1.96]
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A Simple Example - Step 1 More & Less fav. DGPs

Infeasible Critical Value o = 0.05

0 More Fav. 2 4 LessFav. 6
‘/\1 - /\2|

If A1 = Ay, the infeasible Cl is [min{?xl,ﬁz} -1, max{Xl,Xz} + 1]

If A1 < Ay, the infeasible Cl is [min{xl,xz} —1.64, max{A1, A2} + 1.64}
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A Simple Example - Step 2 Conditional CV

Probability of § = s

0.8
0.6
0.4r

0.2r

0 . . . . ,
0 More Fav. 2 4 LessFav. 6

A= Al

where s = argmin Ap, S =argmin Ay
b=1,2 b=1,2
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A Simple Example - Step 2 Conditional CV

Probability of § = s

0.8
0.6
0.4r

0.2r

0 . . . . ,
0 More Fav. 2 4 LessFav. 6
Ay - Al

where s = argmin Ap, 5= argmin Xb
b=1,2 b=1,2
Construct conditional cv based on the distribution of T(6)|5=s

16 / 43



A Simple Example - Step 2 Conditional CV

Construct conditional cv based on the distribution of f(())’ S=s

17 / 43



A Simple Example - Step 2 Conditional CV

Construct conditional cv based on the distribution of f(())’ S=s

Recall
7A'(9) = max{min {9 P - Xg} , min {7\1 -0, A5 — 9}}

17 / 43



A Simple Example - Step 2 Conditional CV

Construct conditional cv based on the distribution of f(())’ S=s

Recall
7A'(9) = max{min {9 P - Xg} , min {7\1 -0, A5 — 9}}

Specifically, | consider

?(e)\?(e):efxl s=s
?(9)‘?(9):97& s=s
7(0) ‘?(9) S P
7(0) ‘?(9) —A—035=s

17 / 43



A Simple Example - Step 2 Conditional CV

Construct conditional cv based on the distribution of ?(6)’ S=s

Recall
7A'(9) = max{min {9 P - 7\2} , min {7\1 -0, A5 — 9}}

Specifically, | consider

?(e)\?(e):efxl s=s
?(9)‘?(9):97& s=s
7(0) ‘?(9) P
7(0) ‘?(9) —A—035=s

17 / 43



A Simple Example - Step 2 Conditional CV
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A Simple Example - Step 2 Conditional CV

I illustrate with
SN ~ FOSD o
70)|FO -t—05=s = TN(0[0-Aa 2 0]

Let a°°" € (5, &) be the conditional rejection rate, recommend a°" =

Define ¢ as the 1 — a®" quantile of TN (0, [9 — A2, Ap — GD

(61PN .

v" Valid size under less favorable DGPs:

P(T®O) >ec) <P (T(O)>c"[s=5)P(5=5)+P(E#s) <a

v Smaller than 5™

- ( con | (1 — 2a°°")P (Xg - 9))
o ( con+( 2acon))
ol ( con) < ® (1 _ E) — Csim
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A Simple Example - Step 2 Conditional CV

The rejection region of <°" for Hy : min {A1, A2} <0 < max{A1, Az}
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A Simple Example - Step 3 Modification

| introduce a novel modification

cm(B,ct) = {

ccon(g)  if econ(g) > ct

Ct
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To determine the value of ct, fix ¢t = ¢
P60 & CI;A) <max{P ([0, 0mia] Z Cl;A), P ([0mid.0u] £ CI;A)}

with A = (A1, A2), 0, = min{A1, A2}, 0, = max{A1, Ao}, Omig = (6, + 0,)/2
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=:p(c, M)

® 5(c, A) is easier to calculate

® p5(c,A) is not overly conservative
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A Simple Example - Step 3 Modification

| introduce a novel modification

Cm(G, Ct) — {’C\con(e) {i’c\con(e) i Ct

To determine the value of ct, fix ¢t = ¢
P60 ¢ CI;A) <max{P ([0, 0mia] £ Cl;A), P ([Omid.0u] £ CI;A)}
<max{P (T(6y) > c™(0s,¢c) or T(Omid) > €™ (Omid. €); 1)

P(T(0y) > c™(0u,c) or T(Omid) > €™ (Omid. ¢); A)}
=:p(c, M)

Thus it suffices to have

ct = inf{c >0:supp(c,A) < tx}
AEA

This lower truncation guarantees uniform coverage
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A Simple Example - Step 3 Modification

The rejection region of é™ for Hp : min {A1, A2} <6 < max{A1, A2}

H 2r 3 ‘ =

Larger power: the new Cl has a larger rejection region

Valid: the lower truncation removes counter-intuitive rejection region
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A Simple Example - Summary

The main idea of the modified conditional Cl
1. Define less and more favorable DGPs
2. Construct a conditional cv
® valid under less favorable DGPs
3. Modify the conditional cv

® valid under more favorable DGPs

More fav. Less fav
Valid Valid
Short
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General Cases - Test Statistic
Construct Cl by inverting

Ho :minAyp <0 < maxA
0 beB b = ~ beB ub
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0 beB b = ~ beB ub

There are normal estimators Ay, A,

A — Ay
~ ’ ~ N Y
< )\u_/\u ) (O’ )
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General Cases - Test Statistic
Construct Cl by inverting

Hop:minA,, <0< A
0 Znel?? b = _Teal)%( b
There are normal estimators }A\g, Au
A — Ay
~ i ~ N (0%
(323 ) ~wox

The test statistic

~ Arp—0 6—A
T(0) = max{min £b 7 " min "'b}
beB 0y p beB  Oyp

o~

where 0y, = y/var(Ayp), 0y p = var(Ayp)
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General Cases - Test Statistic
Construct Cl by inverting

Ho : min A <6 <maxA
0 B lb = = B u,b
| | ere are norn al estimators Ag, /\u

Ae—Ag
B Y N
(AU—AU) (©.%)

The test statistic

o~

where 0y, = y/var(Ayp), 0y p = var(Ayp)

The simple critical value ¢s™ = ®~1(1— %) gives a simple Cl

cjsim — inA, . — 11— & A o 11—
Lrgnglg 06 = 00p® (1= 3), maxAy b+ p®

N

a)}
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General Cases - Test Statistic
Construct Cl by inverting

Ho :minAyp <0 < maxA
0 beB b = ~ beB u,b

There are normal estimators Ay, A,

A=Ay
~ ’ ~ N Y
( )\u_/\u ) (O’ )

The test statistic

~ Arp—0 6—A
T(0) = max{min £b 7 " min "'b}
beB Oy p beB  Oyp

where 0y, = \/var(A L Oub = var(Xu b)

The simple critical value ¢s™ = ®~1(1— %) gives a simple Cl

. A 4 A~
CI™ = |minA;p — 0y , @ 11— 2), A o, & (1 —
Lryelg 06— 0rp® 7 ( 2) maxAy,b + Ou,b (

N

a)}

c5'™M is valid but can be very conservative
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General Cases - A Simple Critical Value
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P (9 ¢ CIS““) —p (9 ¢ {Lneig)l('b — 0y, ® (1 - g), max Ay + 0,5 @ (1 - f)D

24 /43



General Cases - A Simple Critical Value

c5'™M is valid but can be very conservative

P (9 ¢ CIS““) —p (9 ¢ hneig)lm — 0y, ® (1 - g), max Ay + 0,5 @ (1 - f)D
A _ [ A _ 14
<P (0¢ [Arb —00n @ (1= ). Aub, +0up,® (1= 3)])

where

by = argminA; p, by = argmaxA, p
beB beB

® < is conservative if Ay p, A~ minpp, Ay p OF Ay p, A Minpp, Ayp
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General Cases - A Simple Critical Value

c5'™M is valid but can be very conservative

sim\ _ P _ -1 _E A -1 _ﬁ
P(9¢CI )_P(eg{gg)%b 06 ® (1= 5), maxAyp 40,6 (1 Z)D

—P (9 ¢ [Af,bl - U[’bt‘¢71(1 - %) Au,bu +0'u,buq)71(1 - %)})
<P (9 <App — o ® 11— %)) P (9 > Ayp, + Tup, @ 11— %))

is conservative if Ay p, & minp_p, Ay p Or Ay p, & mingrp, Ayp
follows from P(AU B) < P(A) 4+ P(B)

INIA
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General Cases - A Simple Critical Value

csM is valid but can be very conservative
: LA _ 14 A _ 14
P (9 ¢ Cls'm) =P (9 ¢ {mln Ao b — 00 p® Y- 5) ?eaé(A“'b + 0, P Y- 5)])

Aub, + Cup, @ 21— ﬁ)})

1%
P(9 ¢ [Mbl 006,® (1= 3), 3
N -1 14 14

gP(9<M,vbf—ag,b[© (1- E))+P(9>Aub 05D (1—5))

Avb — Aok _1 a
=p =2 =F _ =

( en + >d (1 2)

A A
+P< T >¢1<1“>>
Ju,b 2

is conservative if Ay p, & minp_p, Ay p Or Ay p, & mingrp, Ayp
follows from P(AU B) < P(A) 4+ P(B)

INIA
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General Cases - A Simple Critical Value

csM is valid but can be very conservative
: LA _ 14 A _ 14
P (9 ¢ Cls'm) =P (9 ¢ {mln Ao b — 00 p® Y- 5) Teaé(Au’b + 0, P Y- 5)])

(9 ¢ [M b — 0 p @ (1= 5), Ayp, + 05, (1 ﬁ)])

<P 2 5
gP(9<M,bf—ag,b[®—1(1 %)>+P<6>/\ub 40y, @ (1—%))
Aip, —A
Tu.b 2
S%-l—g—a

e < follows from P(AUB) < P(A) + P(B)

® < is conservative if A, p, — Ay p, >0,
see Imbens and Manski(2004), Stoye(2009)

e < is conservative if Ay p, A~ minpcp, Ay p OF Ay p, R mMinpLp, Ayp
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General Cases - A Simple Critical Value

c5'™M is valid but can be very conservative

P (o ¢ cim) =P (0 ¢ [min s~ c0s® 11 - 3). mahus +ous® 1= 5)| )
S

Aub, +0up, @ 11— %)D

<P (0 [Arp —oup @ (1-3),
gP(9<M,bf—ag,b[®—1(1 %)>+P<6>/\ub 40y, @ (1—%))
_p (}\(,b/aﬂb/\/,,b, n >®1(1_§)>
+P<A”bﬁ Muby | >d>1(1“)>
Ou,b 2
S%-l—g—a

e < is NOT conservative if Ay, < minpsp, Agp and Ay p, > ming2p, Ay b

e < follows from P(AUB) < P(A) + P(B)

® < is NOT conservative if A, p, = Ay p,
see Imbens and Manski(2004), Stoye(2009)
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General Cases - A Simple Critical Value

CSIm

P(o¢crm)=p

° Csim

is valid but can be very conservative
(9 ¢ {min}w p— 0 p® (1= g), max A, p + 0y p® (1 —
' ' 27" beB '

(9 ¢ [M b — 006, @ (1 - %) Aub, +0up, @ 11— ﬁ)])

2

N _ 14
<9<A/,bp_af,b/® 1(1 §)>+P<9>/\ub +Uubq> (

Ay, — A Aoy —
é,b; lb[ + Z,b/ > @ ]_(1 _ g)

Or.b T,b 2

Aup, — A 60— A
+P u,b, u,b, u,b, > @71(1 . ﬁ)
Uu,b U‘uyb 2

',
2

is nearly optimal among constant critical values

® |t is crucial to use a data-dependent critical value

1))

%)
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General Cases - Conditional Critical Value
The test statistic

:,\-(9) = max{min wv min \/E(G_X“’b)}

beB 3&[, beB Eu,b

where Gy, = «/var(X@b), Oyp= «/var(Xu’b)

The conditional critical value

- R R 3o
-1 con , ) __ ,con . _ Mgy
ceon J O (@ (02(0.50) + @@ (02(0.B0) )i TO) = 5
b, o S 0—A -
o1 <o¢c0n<I) (tu,1(9, bu)) F (1 - a%om)D (tu‘2(9, b,,))) iFT(0) = ek
where
by = arg min /A\é'bie b *argminm
T Thes Oup/Vn T Thes Gup/v/n
N I W Y
t, 9,b =min (14 py,(b, b — 42 4 b, b) =4
0(6.6) EEB( Prulb.B)) (Uu,b/ﬁ Prul )W,,b/\/ﬁ
i -~ £y) 1 Xﬁb_e ~ » ng—ﬂ
ty»(0,b) = min (1 — b, b 4 _ b, ,
0,2(0, b) 568( pe(b, b)) (Wb/ﬁ pu( )Uf,b/ﬁ
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General Cases - Conditional Critical Value
The test statistic

beB T b beB

7A—(G)zmax{min w i M}

where Gy, = «/var(X@b), Oyp= «/var(Xu’b)

The conditional critical value

~ ~ ~ Aep, 0
-1 con , __ .con : _ by
o |® (2o (t01(0,B,) ) + (1 = a=m@ (12(0.B)) ) if T(0) T
@1 (@ (8,10, 5u) ) + (1= 0P (£,2(0,bu) ) ) if T(6) = 75
° If T(9) = Yo, conditional on arg min Aip=f arg min Ao
Tep, VI bep  ts/Vn peB  Ctb/Vn
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General Cases - Conditional Critical Value
The test statistic

f<e>:max{mm¢wb—9>, mﬂe—M}

beB 0p.b beB Eu,b

where Gy, = «/var(X@b), Gup=/var(Ayp)
The conditional critical value

acon _ @1 (a9 (101(0,By) ) + (1= 2@ (1,2(0,B,)) ) if T(0) = f‘*f”f‘)

= /A/A/\/E
- o 0-ALg
@ < congp (tu1(9 bu)) + (1 —aom)d (tu2(9 bu))) if T(6) = W
° If T(F) = /\“;{79 conditional on arg min AA — arg min 2te—0
e,/ VI beB /\F peB  Ttb/Vn

e |f identified set large, max\, , — minA, , > 1
8 beB ub beB tb vn

geon < q)—l (1 . lxcon) < Csim
® |n addition, if the bounds are not well separated, | c<°"
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General Cases - Modification

The modified conditional critical value

. ceon(g) if eon(g) > ct
<6, ") = {ct if cc°n(9) < ¢t

The lower truncation ct is

ct=inf{c>0: sup p(c,A) <w
¢ AEA
where 9() = minbeB )‘é,br 0, = maxpe /\u,bv Om = (9( + 9u)/2

p(c, A) = max {P (?(9[) > (8, ¢) or T(Bm) > ™ (O C); (/\,Z)) ,

P (?(em) > ™ (0, ¢) or T(8,) > c™ (84, ¢); (A,Z))}
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The modified conditional critical value

. ceon(g) if eon(g) > ct
<o, ) = {ct if con(9) < ¢t

The lower truncation ct is

ct=inf{c>0: sup p(c,A) <a—y
¢ AEA,

where 9() = minbeB )‘é,br Qu = maXpecp /\u,bv Om = (9( —+ 9u)/2
ple.A) = max {P (T () > c™ (84, ¢) or T(Om) > " (0m. ): (1, T)) .

P (?(em) > ™ (0, ¢) or T(8,) > c™ (84, ¢); (A,Z))}
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Size & Power: Assumptions
Assumption (Known Singularity (KS))

There are known |B| x J matrices Ay, A, such that for some (8p, &,)
Ay = Apbp, Ay = Aubp, Ap = Apdn, Ay = Audn
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There are known |B| x J matrices Ay, A, such that for some (8p, &,)
Ay = Apbp, Ay = Aubp, Ap = Apdn, Ay = Audn

Assumption (Asymptotic Normality (AN))
Let &p ~ N(0,Qp). Assume
Ep [ (v (6 —0p))| - ElF(2p)]| = 0

lim sup sup
N= pecp feBL,

Assumption (Full Rank (FR))
Forall P € P,0< e <eig(Qp) <&é< oo
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Size & Power: Assumptions
Assumption (Known Singularity (KS))

There are known |B| x J matrices Ay, A, such that for some (8p, &,)

Ay = Apbp, Ay = Aubp, Ap = Apdn, Ay = Audn

Assumption (Asymptotic Normality (AN))
Let &p ~ N(0,Qp). Assume
Ep [f (v (8. —0p))| — ElF(ER)| =0

lim sup sup
N= peP feBLy

Assumption (Full Rank (FR))
Forall PeP,0<e<eig(Qp)<ée<oo

Assumption (Consistent Covariance Estimator (CE))

For all € > 0, limp—00 Suppep P (H(A),, - QPH > s) =0
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Size & Power: Asymptotic Size Properties

Theorem (Uniform Coverage)

Suppose Assumptions KS, AN, FR, CE hold, for any « € (0,0.5),

liminf inf inf POeCI™) >1—u
N0 PEP e[y p, A

u,by

The modified conditional Cl has proper asymptotic coverage

28 / 43



Size & Power: Comparison with Simple Cl
Theorem (Symmetric Or Large Bounds)
Suppose Assumptions KS, AN, FR, CE hold, « € (0, %)

(Symmetric Bounds) If corr(Ayp, App,) < 05 (&, &), corr(Agp,, App,) < p3(a)

A=Ay
Then

©@ My (I is Strictly Shorter:
There is o' > « such that

lim inf P (C/'" (An, £/ n;a) C CI5M (in,in/n;a/)> =

© My Cl has Higher Power:
There is k € (0, +00) such that

liminf P (6, ¢ CI™ (A, £/ma)) = P (6n ¢ CI*™ (A, £/n;a)) >0

for some 0, = 6, — =

N
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Size & Power: Comparison with Simple Cl
Theorem (Symmetric Or Large Bounds)

Suppose Assumptions KS, AN, FR, CE hold, « € (0, %)
(Large Bounds)

Ayp—minAy, > 0
ma s inArs 2 € >
Then
©@ My (I is Strictly Shorter:
There is o' > « such that
liminf P (Clm (/A\n,ﬁ,,/n;tx) c cIsim ()Akn,ﬁn/n;tx/)> =5
© My Cl has Higher Power:
There is k € (0, +00) such that

liminf P (6, ¢ CI™ (A, £/ma)) = P (6n ¢ CI*™ (A, £/n;a)) >0

for some 0, = 6, — =

N
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Connection to Moment Inequalities

Moment Inequalities
Ho :maxAyp <0
0 A S

An intuitive test statistic

'IA'(G) = max 7\5(}\“' —9)
beB Ou,b
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Connection to Moment Inequalities

Moment Inequalities
Ho :maxAyp <0
0 A S

An intuitive test statistic

Vn(Ag,—0) Vn(Ap = Arp) n

7(6) = max = max

V(A —6)

beB 0¢.b beB 0¢.b

0¢b
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Connection to Moment Inequalities

Moment Inequalities
Ho :maxAyp <0
0 A S

An intuitive test statistic

7(0) = max VnAep—6) - Vn(Aus = M) n Vn(Ayp —0)
beB O¢.b beB O¢.b O¢.b

Key difficulty: \/n(Ay, —6) cannot be consistently estimated
Solution: y/n(Ayp —60) < 0 = get an upper bound \/n(A;, —0)/VInn
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Moment Inequalities
Ho :maxAyp <0
0 A S

An intuitive test statistic

7(0) = max VnAep—6) - Vn(Aus = M) n Vn(Ayp —0)
beB O¢.b beB O¢.b O¢.b

Key difficulty: \/n(Ay, —6) cannot be consistently estimated
Solution: y/n(Ayp —60) < 0 = get an upper bound \/n(A;, —0)/VInn

Union bounds
Ho:minAyp <6
0 belg tb =

An intuitive test statistic

. Arp—0 App—A App—0
7(6) = min V(Aep=0) _ o Vn(Aes = Aep) | V(Ao —6)
beB O¢.b beB O¢.b O¢.b
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Connection to Moment Inequalities

Moment Inequalities
Ho :maxAyp <0
0 A S

An intuitive test statistic

7(0) = max VnAep—6) - Vn(Aus = M) n Vn(Ayp —0)
beB O¢.b beB O¢.b O¢.b

Key difficulty: \/n(Ay, —6) cannot be consistently estimated
Solution: y/n(Ayp —60) < 0 = get an upper bound \/n(A;, —0)/VInn
Union bounds
Ho:minAyp, <6
o:minAp <
An intuitive test statistic

(6) = min ViAep =) _ . Vn(Ais = Aup) L V(A —0)

beB O¢.b beB O¢.b O¢.b

Key difficulty: v/n(Ag ), —6) cannot be consistently estimated & unknown sign
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Connection to Moment Inequalities

We can write union bound problem as specification test in moment ineq

® (Consider a one-sided union bound problem
min {)\1,/\2} < 0

® This is equivalent to Ix € [0, 1] such that
xA1+(1—=x)A2 <0
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moment ineq do not perform well
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Connection to Moment Inequalities

We can write union bound problem as specification test in moment ineq

® (Consider a one-sided union bound problem
min {)\1,/\2} < 0

® This is equivalent to Ix € [0, 1] such that
xA1+(1—=x)A2 <0

However, when both A1 and A5 are close to zero, the existing procedures in
moment ineq do not perform well

® Bugni, Canay, and Shi (2015, 2017): their minorant condition fails, no
uniform validity

® Kaido, Molinari, and Stoye (2019): a first-order approximation, the critical
value reduces to the simple critical value

This suggests that my procedure can potentially be applied to improve existing
specification tests when the constraint qualifications fail.
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Outline

© Simulation
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Setting

Relaxation of the parallel trend assumptions, where
0 =ATT € |minAyy, A
i it
where B={—(T —-1),..., T},

v+ Ap ifb=—(T—1),..0
Ap=Ay = .
’YiA*(b*U if b= 1,....T
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Setting

| conduct inference based on (Z ¥, Q) where (3,?) is simulated from
(5)~((5)n)
Y Y

@ Benzarti and Carloni (2019): consumption tax cuts

| use four () calibrated from

© Dustmann, Lindner, Schénberg, Umkehrer, Vom Berge (2022): minimum wage
© Lovenheim and Willén (2019): teacher collective bargaining
@ Christensen, Keiser, Lade (2023): environmental crises
| normalized v = 0 and use three A
@ Parallel trends assumption holds, i.e. A =01
© Small pre-trends: A is calibrated
© One large pre-trend: A = (10w, 07_1)
In sum, | use 4 x 3 = 12 empirically motivated DGPs G
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Alternative Methods

| compare my Cl with
@ Simple Cl in, e.g., Kolesar and Rothe (2018, AER)
@ Hybrid Cl in Rambachan and Roth (2023, RES)
© Adjusted bootstrap in Ye, Keele, Hasegawa and Small (2023, JASA)
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CDF of Upper Bounds of Cls

DGP: Q) from Lovenheim and Willén (2019)
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CDF of Upper Bounds of Cls

DGP: Q) from Lovenheim and Willén (2019)

Parallel Trends Small Pretrends One Large Pretrend

Identified Set 0
~ Point Est.
My

Modified conditional Cl has proper coverage
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CDF of Upper Bounds of Cls

DGP: Q) from Lovenheim and Willén (2019)

Small Pretrends One Large Pretrend
0.9
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0.7
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0.5
0.4
0.3
*  ldentified Set g ,
s Point Est. B
— M . o
Simple
0l o
0 1 2 3 4 1 2 3 4 9 10 " 12

Modified conditional Cl outperforms simple Cl in all DGPs

® Reduces median simple Cl (net of point est.) by 31% under small violation
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— M . o
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0l o
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Modified conditional Cl outperforms simple Cl in all DGPs

® Reduces median simple Cl (net of point est.) by 31% under small violation
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CDF of Upper Bounds of Cls

One Large Pretrend

DGP: Q) from Lovenheim and Willén (2019)
Pt—‘xrallelv T(_ends ‘Smal! Pret__r_ends

0.9
0.8
0.7 !
- /
'
0.6 '
'
'
0.5 ; ;
; '
0.4 = '
K '
) '
0.3 ' L
*  Identified Set o B
s PoINE ESL. 02 A ;
— My 5 !
Simple 0.1 d 3 F
- === Hybrid ) A S/
o é -
2 3 4 1 2 3 4 9 10 1 12

Modified conditional Cl outperforms Hybrid CI under no or small violations
® Reduces median Hybrid Cl (net of point est.) by 43% under small violation

® Hybrid Cl is efficient with large violation, but my Cl is close
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CDF of Upper Bounds of Cls

DGP: Q) from Lovenheim and Willén (2019)

Parallel Trends Small Pretrends One Large Pretrend

0.9
0.8
0.7
0.6
0.5

0.4

*  ldentified Set 3
................ Point Est.

— My 0.2

Simple
———— Hybrid 0.1 #
........... Adj Boot -

0

Modified conditional Cl outperforms Adj Boot Cl for relatively large alternatives
® Reduces median Adj Boot Cl (net of point est.) by 27% under large violation

® Power plot of Adj Boot will be flatter with larger n
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CDF of Upper Bounds of Cls

DGP: Q) from Benzarti and Carloni (2019)

Parallel Trends Small Pretrends One Large Pretrend

0.9

0.8

0.7

0.6

0.5

0.4

*  ldentified Set 3
................ Point Est.
— My
Simple
-~~~ Hybrid 0.1¢"
........... Adj Boot

by’

0
0 002 0.04 006 008 0.1 0.05 0.1 0.15 0203 0.35 04

Modified conditional Cl outperforms Adj Boot Cl for relatively large alternatives
® Reduces median Adj Boot Cl (net of point est.) by 38% under small violation

® Power plot of Adj Boot Cl will be flatter with larger n
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Outline

© Empirical lllustration
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The Effects of the Minimum Wage: Diff in Diff

RR23 in Dustmann, Lindner, Schénberg, Umkehrer, Vom Berge (2022, QJE)

What are the effects of the minimum wage?

® Addresses wage inequality

® Potential disemployment
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The Effects of the Minimum Wage: Diff in Diff

RR23 in Dustmann, Lindner, Schénberg, Umkehrer, Vom Berge (2022, QJE)

What are the effects of the minimum wage?

® Addresses wage inequality <= Significant Wage Effect

® Potential disemployment < Insignificant Employment Effect
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The Effects of the Minimum Wage: Diff in Diff

To study the employment and wage effect, run

2016
log(emp,e) = ), 25GAP/1[T =t]+af +E +ef
T=2011,7#2014
2016
log(wage,) = Y. YWGAP,L[r = t]+a¥ +&F + e

T=2011,7#£2014

® log(emp,,) is the log employment in district r time t; log(wage,;) is log wage
® GAP, is a measure of the exposure to the minimum wage
® Pre-policy year 2011-2014

Question: whether the employment elasticity with respect to own wage is less
than 1 in absolute value

dlog(emp,) _ _ dlog(wage)
dGAP, IGAP,
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Employment Regression

Employment Regression Coefficients

05
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Employment Regression

Employment Regression Coefficients

RN N } Aoy
05F 12} !
RN N } Asous
0 ~—

05} - }
L
15
Py . . . . .
2011 2012 2013 2014 2015 2016
Year
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Employment Regression

Employment Regression Coefficients

05F 12}\
RN N } Asous

2011 2012 2013 2014 2015 2016
Year

Relax the parallel trends assumption by the second differences relative magnitudes

|A2015 — Aop1a| KM X m

Ay — A
t=201§,X2014| ¢~ Bl
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The Effects of the Minimum Wage: Diff in Diff

The authors relax parallel trends as in RR23

T Simple

08 1  P—Hybrid
04r
ol
04t
-0.8

(; O.‘Z 0.‘4 016 018 1‘ 112 114
M
® |s employment effect > —0.6 (wage effect) w/o parallel trends?

® The breakdown M: MMy = 1, mHybrid — .75 psim = 0.6
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Energy Label Effects: Regression Discontinuity

Sejas-Portillo, Moro, and Stowasser (2025, AEJ) examine how energy labels
influence property prices.

In the UK, residential properties for sale/rent report a SAP score, measured on a

discrete scale from 1 to 100

® Rating bands from A to G are arbitrary and provide no additional information

® The simplified label may divert buyers' attention toward the rating bands
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Energy Label Effects: Regression Discontinuity

The empirical strategy relies on a regression discontinuity design
Pi = 11Ti+72T; X SAP; + 72 T; x (SAP;)? + o + B1SAP; + B2(SAP;)* +¢;

® P; denotes the log of price per square meter
® T;is an indicator for whether the SAP score has crossed a rating band cutoff
® 1 is a potentially biased estimand for the label effect

The running variable (the SAP score) is discrete. | follow Kolesar and Rothe
(2018) and construct robust confidence intervals

Assumption: bounds on specification errors at the threshold

lim A(x)| < max|A(X)], |lim A(x)] < max |A(X
[lim AG)] < max [AG)], [lim AGx)] < max |A(X)]

x'>k
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Energy Label Effects: Regression Discontinuity

0.03
0.025
0.02 -
0.015
0.01 -

0.005

-0.01 +  Point. Est.
Simple
-0.015 1 Modi. Con.

_002 1 1 1 1
4 6 8 10 12 14

Estimate Window h
For estimation window h, we have 4h(h+ 1) bounds

Computation takes approximately 2 ~ 20 minutes per interval
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Outline

@ Conclusion
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Conclusion

This paper studies inference on union bounds

0 € |minAyp, maxA
beB tb beB u,b

| propose a Cl based on modified conditional inference which

® Theory & Simulation: has shorter Cl & larger local power under a large set of
DGPs

® Empirical illustration: gives statistically significant results while the
pre-existing alternatives do not

® Companion R package UnionBounds available online
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Finite B: Empirical Illustration

To study the employment and wage effect, run

2016
log(emp,;) = ). YeGAP, 1 [T = t] +af +Gf + €5
T=2011,7#2014
2016
log(wage,e) = Y.  yWGAP/1[t=t]+ay + P +ebt

7=2011,7#2014

® |og(emp,;) is the log employment in district r time t; log(wage,;) is log wage
® GAP, is a measure of the exposure to the minimum wage
® Pre-policy year 2011-2014

We are interested in the employment and wage effect at t = 2015 @D
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Finite B: Empirical Illustration

RR23 in Dustmann, Lindner, Schonberg, Umkehrer, Vom Berge (2022, QJE)
What are the effects of the minimum wage?

® |s employment effect > —0.6 (wage effect) without parallel trends?

e
05} .

0

Employment Regression Coefficients

2011 2012 2013 2014 2015 2016
Year
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Finite B: Empirical Illustration

RR23 in Dustmann, Lindner, Schonberg, Umkehrer, Vom Berge (2022, QJE)
What are the effects of the minimum wage?

® |s employment effect > —0.6 (wage effect) without parallel trends?
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15F T~

1t

05

0

-05

Employment Regression Coefficients

2014
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2011
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Finite B: Empirical Illustration

RR23 in Dustmann, Lindner, Schonberg, Umkehrer, Vom Berge (2022, QJE)
What are the effects of the minimum wage?

® |s employment effect > —0.6 (wage effect) without parallel trends?

Employment Regression Coefficients

2
15F T~
RN Asors
1 “—ul S
RN o } Asors

05

2011 2012 2013 2014 2015 2016
Year

Relax the parallel trends assumption: |A2g15 — Ago1a| < M % |[Ar — Ap_q]

maxXx
t=2013,2014
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Simulation - Setting

| set n = 5000
Each sample {W;}!_; and estimator is generated by

Wai ) A
(W)~ ((5))
The estimator is calculated by
2 )= (i)~ (7))
—~ g n ! ~ ,Q
( Y ) ( %ZW'y,i Y
| conduct inference using pair (K'? Q)
[+ Back ]
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Size & Power: Comparison with Simple Cl
Theorem (Symmetric Or Large Bounds)

Suppose Assumptions KS, AN, FR, CE hold, « € (0, %)
(Symmetric Bounds) If corr(Agp,, Ay p,) < pi(a,a€), corr(Agp, Arp,) < p5(2)

XZ:XU

©@ My (I is Strictly Shorter:
There is o' > w such that

liminf inf P (¢ (An B/ mia) € CIF™ (R, En/ i) ) = 1

@ My Cl has Higher Power:
For all P, € Py, there is a subsequence Pr, and x € (0, +c0) such that

liminf Pr, (6, & CI™ (A, £/Tnia)) = Pr, (65, & CI™ (A, £/ 1) ) >0

K

for some 0z, = 0) — e
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Size & Power: Comparison with Simple Cl
Theorem (Symmetric Or Large Bounds)

Suppose Assumptions KS, AN, FR, CE hold, « € (0, %)
(Large Bounds) Let x, = o(+/n) and x, — oo, and

Kn
Pn =5 {P c ,P:)‘u,bu _Aﬂ,b[ > ﬁ}

©@ My (I is Strictly Shorter:
There is o' > « such that
liminf inf P (CI™ (An,Sn/m) C CIF™ (An, £0/mia’) ) =1
n Pep,

@ My Cl has Higher Power:
For all P, € Py, there is a subsequence Pr, and x € (0, +c0) such that

liminf Pr, (6, & CI™ (A, £/Tnia)) = Pr, (65, & CI™ (A, £/ 1) ) >0

K

for some 0z, = 0) — e
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Intersection & Union

|nte|secti0n bounds
‘i . |3X)\ < 9
0 2 lb =

An intuitive test statistic

7'(9) = max 7\/E(M’b —9)
beB Ou,b
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Intersection & Union

|nte|secti0n bounds
‘i . |3X)\ < 9
0 2 lb =

An intuitive test statistic

Vn(App—0) V(Ao — M) n

7(6) = max = max

Vn(Ay, —6)

beB 0¢.b beB 0¢.b

0¢.b
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Intersection & Union

|nte|secti0n bounds
‘i . |3X)\ < 9
0 2 lb =

An intuitive test statistic

. App—0 App—A Arp—0
(6) = max V(A =0) _ V(Aes = Aep) | Vn(Aep —0)
beB O¢.b beB O¢.b O¢.b

Key difficulty: v/n(Ay, —6) cannot be consistently estimated
Solution: y/n(Ayp —60) < 0 = get an upper bound \/n(A;, —0)/VInn
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Intersection & Union

|nte|secti0n bounds
‘i . |3X)\ < 9
0 2 lb =

An intuitive test statistic

. App—0 App—A Arp—0
(6) = max V(A =0) _ V(Aes = Aep) | Vn(Aep —0)
beB O¢.b beB O¢.b O¢.b

Key difficulty: v/n(Ay, —6) cannot be consistently estimated
Solution: y/n(Ayp —60) < 0 = get an upper bound \/n(A;, —0)/VInn

Union bOUI‘IdS
Ho:minAy,p <6
0 belg tb

An intuitive test statistic

(6) = min Ve =0) _ V(Ao = Arp) L V(A —0)

beB 0¢.b beB 0¢.b O¢.b
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Intersection & Union

|ntelsecti0n bounds
‘i . |3X)\ < 9
0 2 lb =

An intuitive test statistic

. App—0 App—A Arp—0
(6) = max V(A =0) _ V(Aes = Aep) | Vn(Aep —0)
beB O¢.b beB O¢.b O¢.b

Key difficulty: v/n(Ay, —6) cannot be consistently estimated
Solution: y/n(Ayp —60) < 0 = get an upper bound \/n(A;, —0)/VInn

Union bOUI‘IdS
Ho:minAy,p <6
0 belg tb

An intuitive test statistic

7(6) = min Vin(Ary—6) min V(Ags —Ap) L V(A —0)

beB 0¢.b beB 0¢.b O¢.b

Key difficulty: v/n(Ay, —6) cannot be consistently estimated & unknown sign
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Step 2: Conditional CV

Lemma

q)( 9) tglebg |{T

Z[b ni 011
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A Simple Example - Step 3 Conditional CV

| illustrate with

TO)|TO)=A1-65=s
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A Simple Example - Step 3 Conditional CV

| illustrate with CEED
TO)|T@O)=A—0,56=s
~A —0]T(0)=A1—0,5=5s
N31—9’9—32§21—9§5\2—9,§:S
~A =010 —A <A —0<A—0 ands =1
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A Simple Example - Step 3 Conditional CV

Lemma
®(T(0)) =D (t1(6,60) ;o FOSD
B3 (0,5)) =B (10,06 | L O = Zem} 2 Unif(O.1)
D { min (1-+ pru(b,8) ™ (2,5 pru(b,B)Z1)  if minoru(b,B) >
—o0 otherwise

beB:pi(b,b)<1
+o00 otherwise

a6 { min_ (1—pg(b,5))_1(ZZ'E—p[(b,E)Z&b) if minpy (b, b) <

X0 byba X0u,byb
(b1, bo) = —=22—, py,(b1, bp) = —=2=2-,
pelbr. b2) CmTbs ulbr. b2) 0%,by Ou, by

1
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How to choose a°
Larger a¢: smaller ¢°" & larger ¢t = larger power w/ less fav. DGPs
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How to choose «€

Larger a¢: smaller ¢°" & larger ¢t = larger power w/ less fav. DGPs
| suggest a© = %ac
® CI™ C CIS™ if (i) the bound is wide; (ii) the bound is symmetric

® performs well in the simulation and empirical applications
Special Case: Af,bg < /\u,bur /\Z,bg < minbEB\bg )tg'b, )\u,bu > minbeB\bu Au,b
acon cI)fl(l _ D(C)

® By Imbens and Manski (2004), we only need to use ¢ = ®~1(1 —«)
°lfat=a, ctrd1(1-%)

Solution 1: depends on A, e.g. test Ay, < Ay p,
® need additional tuning parameter

Solution 2: depends on %, e.g. calculate weighted average power by simulation

® can be time consuming
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