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Abstract

A union bound is a union of multiple bounds. Union bounds occur in a wide

variety of empirical settings, from relaxations of the difference-in-differences parallel

trends assumption to counterfactual analysis with partially identified structural

parameters. In this paper, I provide the first general and systematic study of

inference on these kinds of bounds. When the union is taken over a finite set,

I propose a confidence interval based on modified conditional inference. I show

that it improves upon existing methods in a large set of data generating processes.

When the union is taken over an infinite set, I consider the set defined by moment

inequalities, as is common in practice. I then propose a calibrated projection based

inference procedure that generalizes results from the moment inequality subvector

inference literature and is computationally simple. Finally, the new procedures

give statistically significant results while the pre-existing alternatives do not in two

empirical applications, the sensitivity analysis in Dustmann, Lindner, Schönberg,

Umkehrer, and Vom Berge (2022) and the counterfactual analysis in Dickstein and

Morales (2018).
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1 Introduction

This paper studies inference for a target object partially identified by the union of a set of

bounds, namely, a union bound, and provides new procedures that significantly improve

upon the existing alternatives. Union bounds commonly arise in empirical work. For

example:

1. Assessment of the importance of the parallel trends assumption in difference-in-

differences (DiD) analyses. Recent papers such as Manski and Pepper (2018) and

Rambachan and Roth (2023) study the relaxation of the classical parallel trends

assumption within a DiD framework. One of their approaches is to assume that

the violation of parallel trends in a post-policy period is bounded above by the

maximum violation in the pre-policy periods. In this case, the identified set for

the average treatment effect on the treated (ATT) can be characterized as a union

bound, where each bound is formed by the DiD estimand adding and subtracting

the violation of a pre-policy year, and the set is all pre-policy periods.

2. Counterfactual analysis in structural models. Dickstein and Morales (2018) study

how the information set processed by exporters affects their decisions. One of

the counterfactuals of interest is the change in the number of exporters with a

change in their information set or fixed cost. The structural parameter satisfies a

set of moment inequalities, and the counterfactual outcome may only be partially

identified even if the structural parameter is known. Consequently, the identified

set of the counterfactual outcome is a union bound, where the set contains all

the structural parameters that satisfy the moment inequality restrictions, and each

bound is the identified set of the counterfactual outcome given a potential value of

the structural parameter.

I revisit these two applications in detail for empirical illustration. I also discuss applica-

tions to regression discontinuity designs, bunching strategies to identify the elasticity of

taxable income, marginal treatment effects, and misspecification in instrumental variable

models in Section 2.

In this paper, I provide the first general and systematic study of inference on union

bounds. I consider two categories of union bound inference: (i) the set is finite as in the

DiD example, and (ii) the set is infinite as in the counterfactual example. I study the

inference procedures for the target object in both cases.

In the first case when the set is finite, the main difficulty for inference is that the

endpoints of a union bound are non-smooth functions of each single bound. Hirano

and Porter (2012) show that there is no local asymptotic quantile unbiased estimator.

Moreover, Fang and Santos (2019) show that an empirical bootstrap procedure, in the
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terminology of Horowitz (2019), is not uniformly valid. Similar difficulties appear in in-

ference for moment inequalities and directionally differentiable functions, but the existing

methods do not apply to union bounds because of the different restrictions on the null

parameter space. So far there are two uniformly valid methods. The first one is a simple

confidence interval (CI), which is the union of CIs for each bound. This method can be

overly conservative, especially when the bounds are close to each other. The second one

is the adjusted bootstrap procedure proposed in Ye, Keele, Hasegawa, and Small (2023).

This method involves a subsample so the CI converges to the identified set at a rate

slower than
√
n, resulting in trivial power for

√
n local alternatives. Rambachan and

Roth (2023) propose an inference procedure for their sensitivity analysis in DiD. How-

ever, the inference procedure relies on the specific structure of DiD and does not apply

to general union bound settings.

In Section 3, I propose a modified conditional CI. Loosely speaking, I construct a

conditional critical value exploiting the distribution of the maximum estimated upper

bound (resp. the minimum estimated lower bound) conditional on the second largest

estimated upper bound (resp. the second smallest estimated lower bound). In this way,

the conditional critical value is data-adaptive and sensitive to the binding bounds, which

leads to a shorter CI when the bounds are relatively close to each other. However, the

conditional critical value is not uniformly valid, and for that reason, I propose a novel

modification that truncates the conditional critical value from below to guarantee uniform

coverage. The modified conditional CI converges to the identified CI at a rate of
√
n,

and thus has material power improvement upon Ye et al. (2023). I also show that under

a large set of data generating processes (DGPs), the modified conditional CI is shorter

than the simple CI with probability approaching one.

In Section 5, I conduct extensive simulations based on the DiD settings in Rambachan

and Roth (2023) and compare the performance of my modified conditional CI to the

simple CI, the adjusted bootstrap in Ye et al. (2023) and the hybrid CI in Rambachan

and Roth (2023). The length of the median modified conditional CI is the smallest in

most simulation designs and is close to being the smallest in all designs.1 In terms of

the length of the median CI, net of median point estimates of the bound, the modified

conditional CI results in a decrease of up to 43% relative to alternative methods.

In the second case when the set is infinite, I consider the case when the set, e.g. the

identified set of the structural parameter, is formed by moment inequalities, as is often the

case in practice. I assume that each bound, e.g. the bound of the counterfactual given a

potential true structural parameter, is a function of data moments. Among the empirical

applications in this setup, it is common to estimate point-identified nuisance parameters

separately from the structural parameters to improve computational efficiency. Thus I

allow the set and the bounds to include plug-in estimands. One of the current practices

1The median CI is the median of the endpoints of the 1− α CI across simulated samples.
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for counterfactual inference is to first construct a valid confidence set for the structural

parameter (the set), and then take a union of the estimated counterfactuals (the bounds)

over this confidence set, treating the plug-in estimator and the counterfactual as known.

This simple projection CI can be wide since it projects a confidence set of a higher

dimensional structural parameter. Moreover, it may not have proper coverage because it

does not adjust for sampling uncertainty in the plug-in estimator and the counterfactual.

In Section 4, I propose a calibrated projection based procedure. The calibrated CI is a

union of the single calibrated CI of each bound over the calibrated confidence set for the set

of structural parameters. The calibration means that the critical value used to construct

the single CI and the confidence set are chosen so that the coverage rate of the target

object, rather than the structural parameter, is above the nominal value. Calculation of

the critical value is done by repeatedly solving a set of linear programs, which makes it

computationally simple. This method uses insights from subvector inference in Kaido,

Molinari, and Stoye (2019), where a subvector is a known function, usually a single

element, of the structural parameter. Different from the subvector inference procedure,

in this paper (i) the target object can be unknown as well as partially identified even

if the structural parameter is known, and (ii) first step plug-in estimators are allowed.

These two differences allow the new inference procedure to have broader application.

Simulations in Section 5 confirm good size and power properties.

In Section 6, I illustrate the proposed inference procedures in two empirical applica-

tions. First, I consider the application using Rambachan and Roth (2023)’s sensitivity

analysis in Dustmann et al. (2022), which provides an example with a finite set. Specif-

ically, Dustmann et al. (2022) study the effects of the minimum wage introduced in

Germany in 2015. The authors are interested in whether the employment effect is greater

than the negative wage effect, which leads to an elasticity smaller than 1. The authors

conduct the analysis using DiD and relax the parallel trends assumption following Ram-

bachan and Roth (2023). Under all levels of relaxation, the modified conditional CI is

shorter than the simple CI and the one provided by Rambachan and Roth (2023). Under

the benchmark relaxation, my CI suggests that the elasticity is smaller than 1 with a

95% confidence level, while Rambachan and Roth (2023) and a simple CI do not give

results significantly smaller than 1. My method gives a breakdown relaxation 33% to 66%

larger than Rambachan and Roth (2023) and the simple CI. Next, I apply the calibrated

projection CI to Dickstein and Morales (2018). In this case, the set of bounds over which

the union is taken is infinite. The authors are interested in the percentage change in

the number of exporters under a counterfactual information set. They report a simple

projection CI, where the results for all three subsamples are significant. However, as

previously discussed, the simple projection CI is invalid. For that reason, I first validate

their method by properly adjusting for the estimation uncertainty in plug-in estimators

and counterfactuals, and with this adjustment, two of the CIs cross zero. Then I re-
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port the calibrated CI, which is not only valid but also more efficient, and the calibrated

projection CI restores statistical significance.

Related Literature

In the rest of this introductory section, I review the related literature.

When the set is finite

Although there are many empirical examples where the identified set is a union of finite

bounds, only a small number of inference approaches have been developed, which I discuss

next.

First, a common practice is a simple CI constructed based on the intersection union

principle discussed in Casella and Berger (2021) (ch. 8.2.3), see Conley, Hansen, and

Rossi (2012), Kolesár and Rothe (2018), Hasegawa, Webster, and Small (2019), and Ban

and Kedagni (2022), among others. The idea is to first construct a CI for each bound

and then take a union over the set, which is intuitive and has uniformly valid coverage.

However, taking union over the confidence intervals inflates the coverage rate, and the

simple CI can be overly conservative. I prove that the simple CI is wider and has lower

local power than my proposal under a large set of DGPs.

Second, Ye et al. (2023) study the relaxation of the parallel trends assumption in DiD

based on a negative correlation bracketing strategy. The resulting identified set for the

ATT is a union bound. To address inference, they introduce two bootstrap methods.

The first one is an empirical bootstrap procedure, in the terminology of Horowitz (2019).

This method is not uniformly valid and may overreject when the bounds are close to each

other. The second procedure introduces an adjustment term based on a subsample so

that it has uniform asymptotic coverage, but at the cost that the CI converges to the

identified set at a rate slower than
√
n. This causes material power loss for a large set of

local alternatives relative to my CI.

Third, Rambachan and Roth (2023) propose an inference procedure under the specific

structure of relaxation of the parallel trends assumption in DiD. The main idea is to

partition the parameter space so that each element in the partition can be represented by

a set of moment inequalities. Rambachan and Roth (2023) first construct the CI for each

element in the partition based on I. Andrews, Roth, and Pakes (2023). They then take

a union over different elements in the partition to get a valid CI for the union bound.

While the CI for each element is efficient, the efficiency may not hold after taking the

union. In both the simulation and the empirical application, my CI outperforms their CI

when the bounds are not well separated. Moreover, their method uses the specific DiD

structure and does not apply to general finite union bounds.

The inference procedure constructed in this paper also contributes to other related

5



literature, such as intersection bounds, moment inequalities, directional differentiable

functions, and conditional inference.

The union bound inference complements the large literature on intersection bounds

and testing moment inequality models. Chernozhukov, Lee, and Rosen (2013) investigate

inference on intersection bounds, where the target object is in the intersection of a set of

bounds. A leading case of intersection bounds is inference on a parameter bounded by

moment inequalities. See Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh

(2008), Rosen (2008), D. W. K. Andrews and Guggenberger (2009), D. W. K. Andrews

and Soares (2010), D. W. K. Andrews and Shi (2013), and Bugni, Canay, and Shi (2015),

among others, for different inference procedures. Inference for intersection bounds and

union bounds share some similar challenges, but also differ in important ways: The

differences between the target object and the bounds, scaled by
√
n, is an important

element for inference, but can not be consistently estimated. With intersection bounds,

the signs of the differences are known, e.g. the target object is larger than all lower

bounds, while with union bounds, the sign is unclear, e.g. the target object is larger than

at least one lower bound. Thus the problem of inference on union bounds is fundamentally

different from intersection bounds and requires a different treatment.

My method also sheds light on inference on directionally differentiable functions. In

many cases, a union bound can be written as the minimum of a set of lower bounds to

the maximum of a set of upper bounds. The min and max operators are directionally dif-

ferentiable. Fang (2018) and Ponomarev (2022) study the efficient estimation of partially

differentiable functionals, but they do not consider inference. Fang and Santos (2019)

propose a novel bootstrap procedure for directionally differentiable functions. However,

their inference procedure requires that the null parameter space is convex, which does

not hold for union bounds.2 This paper studies a specific non-convex null space, but the

modified conditional procedure is potentially applicable to more general settings.

My paper widens the use of the conditional inference technique. There is a growing

literature on conditional inference, see, e.g. Moreira (2003), Kleibergen (2005), I. An-

drews and Mikusheva (2016), I. Andrews, Kitagawa, and McCloskey (2019), I. Andrews,

Kitagawa, and McCloskey (2021), I. Andrews et al. (2023), and Rambachan and Roth

(2023), among others. I use their insights by constructing a conditional CI that has

proper coverage under a subset of DGPs, and then modifying it with a lower truncation

to guarantee uniform coverage. The modification is a novel contribution that is not used

in current applications of conditional inference.

2Specifically, the space of λℓ and λu under (9) is not convex.
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When the set is infinite

Inference procedures with an infinite set are closely related to the literature on subvector

inference in moment inequality models, where a subvector is a known function, usually a

single component, of the structural parameter. Kaido et al. (2019) proposed a calibrated

projection procedure for subvector inference that uses a local linearization approach to

compute the critical value through linear programming. See I. Andrews et al. (2023),

Bugni, Canay, and Shi (2017), Bei (2024), Chernozhukov, Newey, and Santos (2023),

Chen, Christensen, and Tamer (2018), Cox and Shi (2023), among others, for different

subvector inference procedures. However, the subvector usually does not contain sufficient

information for decision making or policy suggestions. Hence, it is important to extend

the previous work to construct the confidence intervals for counterfactual outcomes. In

this paper, I follow the insights from Kaido et al. (2019) and propose a calibrated projec-

tion CI for unknown and potentially partially identified target objects, which has broad

application to counterfactuals. In addition, previous papers assume that all parameters

are estimated jointly by a set of moment inequality restrictions, which rules out plug-in

estimators. Nevertheless, in practice, it is common to estimate the point identified pa-

rameters in a first step separately from the structural model. In this context, I propose

a simple way to adjust for estimation uncertainty in plug-in estimators.

My paper is also related to the literature on counterfactual analysis and marginal

treatment effect models, but my procedure applies to general moment inequality mod-

els. Kalouptsidi, Kitamura, Lima, and Souza-Rodrigues (2021) study the identification

of counterfactuals for structural dynamic discrete choice models and propose an inference

procedure that bypasses model estimation and directly obtains the confidence sets for the

counterfactuals. However, their procedure requires a specific structure. Cho and Russell

(2023) propose an inference procedure in a similar but more restrictive setting where the

bound and set are linear in the structural parameters. Their procedure involves boot-

strapping the value functions of randomly perturbed linear programming problems, which

is computationally attractive but also produces a confidence set with a coverage probabil-

ity of one. Unfortunately, their method does not apply to nonlinear moment inequalities

and counterfactuals. Mogstad, Santos, and Torgovitsky (2016) propose a profile based

inference procedure for estimated functionals of partially identified parameters that al-

lows a nonparametric framework.3 In their context, the equality restrictions are allowed

to be random while the inequalities are deterministic, formed from the parameter space.

3Mogstad et al. (2016) is a working paper version of Mogstad, Santos, and Torgovitsky (2018).
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2 Setup and Examples

2.1 Setup

A union bound is defined as a union of bounds [λℓ(β), λu(β)] over set B. The goal of this
paper is to construct a uniformly valid confidence interval for the target object θ, whose

identified set is characterized as a union bound

θ ∈
⋃
β∈B

[λℓ(β), λu(β)] . (1)

When the union bound is a connected interval, we can imply write it as

θ ∈
[
inf
β∈B

λℓ(β), sup
β∈B

λu(β)

]
. (2)

In this paper, I assume that λℓ and λu are unknown but consistently estimable with an

asymptotically normal estimator. B is either known or consistently estimable, in the sense

that the Hausdorff distance between B̂ and B converges to zero in probability. Below I

illustrate this setting in different examples.

I consider separately finite B and infinite B. The inference procedure for these two

cases is distinct because (i) with finite B, I consider the estimation uncertainty for all

bounds jointly, while with infinite B, I focus on a small subset of bounds each time, which

is conservative by valid, to simplify the computation; (ii) when B is finite, asymptotically

we can treat the set as known, while when B is infinite, we need to adjust the set for

estimation uncertainty.4

2.2 Examples

When B is finite

Example 1. (Difference in Differences). Rambachan and Roth (2023) study a more

credible approach to the parallel trends assumption in DiD. To illustrate, consider a

simple panel data model t = −T , ..., 1. Let γ ∈ RT+1 be a vector of “event study”

coefficients, which can be decomposed as

γ =

(
γpre

γpost

)
=

(
ξpre

θ + ξpost

)
.

4For simplicity, I assume that the index set for the lower and upper bounds are the same, and this
is the case in all the empirical examples listed below. Moreover, this assumption is without loss of
generality, as we can add redundant bounds to achieve this. For instance, if θ ∈ [min{λℓ,1, λℓ,2}, λu,1],
we can add λu,2 = λu,1 then the identified set of θ has form (1) with B = {1, 2}.
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The target object θ is the average treatment effect on the treated, and ξ is a bias from

a difference in trend. Here θ and ξpost are scalar, ξpre =
(
ξpre−T , ..., ξ

pre
−1

)
and γ0 = ξpre0 is

normalized to zero. Under parallel trends, (ξpre, ξpost) = 0 and thus θ is point identified.

However, this is a strong assumption that may not hold exactly. One type of relaxation

is to assume that the violation of parallel trends at time t = 1 is bounded above by the

maximum pre-policy trend difference

∣∣ξpost − 0
∣∣ ≤M max

t=−1,...,−T

∣∣ξpret+1 − ξ
pre
t

∣∣ , (3)

where M ≥ 0 is the degree of relaxation specified by the researcher. Manski and Pepper

(2018) implement a similar concept with a natural benchmark M = 1 (see their Table

3). Under (3), the identified set of θ is a union bound in (2) with B = {1, ..., 2T}, 5

λℓ(β) = λu(β) =

γpost +M
(
γpre−β+1 − γ

pre
−β

)
if β = 1, ..., T ,

γpost −M
(
γpreT−β+1 − γ

pre
T−β

)
if β = T + 1, ..., 2T .

(4)

Hasegawa et al. (2019), Ye et al. (2023), and Ban and Kedagni (2022) study different

types of relaxations of the parallel trends assumption where the identified set is also

characterized by union bounds.

Example 2. (Bunching and Taxable Income Elasticity). Blomquist, Newey, Ku-

mar, and Liang (2021) study the identification of the taxable income elasticity with

bunching information. Assume that the after-tax income has two linear segments with

slopes ρ1 > ρ2 and a kink at K, as illustrated in Figure 1a. Assume that the preference

is specified as in Saez (2010) by the isoelastic utility function:

U (c, y, ξ) = c− ξ

1 + 1/θ

(
y

ξ

)1+1/θ

, ξ > 0, θ > 0,

where y is the before-tax income, c = y − T (y) is the after-tax income (or consump-

tion), θ is the income elasticity and ξ represents the unobservable heterogeneity which

is continuously distributed with density g(ξ). Blomquist et al. (2021) show that without

the restriction on g(ξ), θ is not identified, but we can learn about θ with smoothness

restrictions on g(ξ). Consider a bunching interval [y1, y2] containing the kink K, as in

Figure 1b. Let ξ1 = ρ−θ
1 y1 and ξ2 = ρ−θ

2 y2 denote lower and upper end points for ξ that

correspond to y1 and y2, respectively. Under the assumption that

σℓ min {g (ξ1) , g (ξ2)} ≤ g(ξ) ≤ σu max {g (ξ1) , g (ξ2)} for ξ ∈ [ξ1, ξ2] (5)

5In Appendix A.5, I give the union bound form of Rambachan and Roth (2023) “relative magnitudes”
relaxation and “second differences relative magnitudes” relaxation with multiple post policy periods.
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for some σu ≥ 1 ≥ σℓ > 0, the identified set of θ is characterized by

θ ∈
[
min
β∈B

λℓ(β), max
β∈B

λu(β)

]
∩ R+

where B = {1, 2},

λℓ(1) =
log
(

y1
y2

+ P (y1≤Y≤y2)
f−(y1)σuy2

)
log ρ1 − log ρ2

, λℓ(2) =
− log

(
y2
y1
− P (y1≤Y≤y2)

f+(y2)σuy1

)
log ρ1 − log ρ2

,

λu(1) =
log
(

y1
y2

+ P (y1≤Y≤y2)
f−(y1)σℓy2

)
log ρ1 − log ρ2

, λu(2) =
− log

(
y2
y1
− P (y1≤Y≤y2)

f+(y2)σℓy1

)
log ρ1 − log ρ2

,

f−(y1) = lim
y↑y1

f(y), f+ = lim
y↓y2

f(y),

and f(y) is the density of y. Note that the identified set of θ is restricted by R+, but it is

easy to see that if we have a valid CI for θ̃ ∈
⋃

β∈B [λℓ(β), λu(β)], then the intersection of

θ̃’s CI and R+ is a valid CI for θ. Thus it suffices to consider inference for union bounds.

Blomquist et al. (2021) focus on identification and put aside inference.

K

Income

A
ft
e
r-

ta
x
 I
n
c
o
m

e

Budget Constraint

Utility: low  at bunching

Utility: high  at bunching

Utility: low 

Utility: high 

(a) Budget Constraint and Utility

y1 y2

Income

A
ft
e
r-

ta
x
 I
n
c
o
m

e

Budget Constraint

Utility: 
1

Utility: 
2

(b) Bunching Interval

Figure 1: Example 2 Bunching and Taxable Income Elasticity

Example 3. (Regression Discontinuity Design). Kolesár and Rothe (2018) study

inference in regression discontinuity designs with a discrete running variable. Let D =

1 [X ≥ 0] be a treatment indicator with running variable X. Let Y (1) and Y (0) denote

the potential outcome with and without the treatment, and Y = DY (1) + (1 −D)Y (0)

denote the observed outcome. Let µ(X) = E [Y | X]. The average treatment effect at

the threshold is

θ = E [Y (1)− Y (0) |X = 0] = lim
x↓0

µ(x)− lim
x↑0

µ(x).

A standard approach to estimate θ is to run a local OLS regression of Y on polynomial
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m(X) with X ∈ [−h, h] where

m(x) = (1 [x ≥ 0] ,1 [x ≥ 0]x, . . . ,1 [x ≥ 0]xp, 1, x, . . . , xp)′ .

Let γh be the regression coefficient and θh = e′1γh, where e1 = (1, 0, ..., 0)′. If X is contin-

uous, the bias ξ(x) = µ(x)−m(x)′γh is negligible if we choose h→ 0 at a sufficiently fast

rate as the sample size increases. However, if X is discrete, this “undersmoothing” pro-

cedure is not feasible. Kolesár and Rothe (2018) propose an honest CI under restrictions

that specification errors at the threshold are bounded above by the specification errors

at other support points, i.e.∣∣∣∣limx↑0 ξ(x)
∣∣∣∣ ≤ max

x̃∈S−
X

|ξ(x̃)| ,
∣∣∣∣limx↓0 ξ(x)

∣∣∣∣ ≤ max
x̃∈S+

X

|ξ(x̃)| ,

where S−
X = SX ∩ [−h, 0), S+

X = SX ∩ [0, h] and SX is the support of X. Under this

restriction, the identified set of θ is characterized by (2) with

B =
{
(sℓ, su, xℓ, xu) : sℓ, su ∈ {−1, 1}, xℓ ∈ S−

X , xu ∈ S
+
X

}
,

λℓ(sℓ, su, xℓ, xu) = λu(sℓ, su, xℓ, xu) = θh + sℓξ(xℓ) + suξ(xu).

Kolesár and Rothe (2018) use the simple CI based on union principle for inference.

Example 4. (Falsification Adaptive Set). Masten and Poirier (2021) provide a con-

structive way for researchers to salvage a falsified instrumental variable model. Consider

the classical linear model with multiple instruments:

Y = Xθ + Z ′γ + U,

where Y is the outcome, X is a scalar endogenous variable and Z is a L × 1 vector

of potentially invalid instruments. Under (i) exogeneity cov(Z,U) = 0, (ii) exclusion

γ = 0 and (iii) a proper rank condition, we can point identify θ. However, if either the

exogeneity or exclusion restriction does not hold, the model may be falsified. In this

context, Masten and Poirier (2021) suggest relaxing the model by ξ ∈ R, where ξ ≥ 0

measures the level of relaxation. The corresponding identified set of θ accounting for the

relaxation by ξ is

Θ(ξ) =
{
θ ∈ R : −ξ1L×1 ≤ var(Z)−1 (cov(Z, Y )− cov(Z,X)θ) ≤ ξ1L×1

}
,

where the inequalities hold element wise. The authors suggest reporting the falsification

adaptive set Θ(ξ), where ξ is the minimum relaxation such that Θ(ξ) is non-empty. In
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addition, they show that FAS is characterized by (2), where

λℓ(β) = λu(β) =
ψβ

πβ
,

ψβ and πβ are the β-th element of ψ = var(Z)−1cov(Z, Y ), π = var(Z)−1cov(Z,X), and

B = {β = 1, ..., L : πβ ̸= 0} .

In their empirical application, the authors implicitly assume that either πβ = 0 or |πβ| ≥
ε > 0 for all β, so that B is consistently estimable, in which case my procedure applies. If

we allow πβ → 0 as the sample size increases, we may not be able to consistently estimate

B, and inference is more complicated. I leave the second case for future research. Apfel

and Windmeijer (2022) propose a generalized falsification adaptive set, which also has a

union bound characterization. Both papers do not consider inference.

Stoye (2020) studies misspecification inference for interval identified parameters. The

identified set for θ is [θL, θu], and this set is empty under misspecification where θL > θU .

Stoye (2020) suggests reporting the misspecification robust identified set

[θL, θU ] ∪
{
σUθL + σLθU
σL + σU

}
, (6)

where σL and σU are the asymptotic standard deviations for estimators θ̂L and θ̂U . In

this case, the identified set is a union bound in (2) with B = {1, 2},

λℓ,1 = θL, λℓ,2 =
σUθL + σLθU
σL + σU

λu,1 = θU , λu,2 =
σUθL + σLθU
σL + σU

.

Stoye (2020) proposes a CI for (6), but it does not apply to general union bounds.

When B is infinite

Example 5. (Counterfactual Analysis). Dickstein and Morales (2018) study how

the information potential exporters possess influences their decisions. In the structural

model, all firms located in the home country are indexed by i = 1, . . . , N and choose

whether to sell in each export market j = 1, . . . , J . The export profit that i would obtain

in market j is

πij = dij (rij − β1 − β2distj − β3vij)
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where dij ∈ {0, 1} is firm i’s export decision, rij is the revenue in market j, distj denotes

the distance from the home country to j, vij ∼ N (0, 1) represents the determinant of πij

observed by the firm i but not by the researcher, and (β1, β2, β3) are structural parameters.

Let Jij be the information that firm i possess. A risk-neutral firm i will decide to export

to j if and only if

E [rij |Jij ]− β1 − β2distj ⩾ β3vij

which implies that

dij
(
β−1
3 E [rij |Jij ]− β−1

3 β1 − β−1
3 β2distj − vij

)
⩾ 0. (7)

Based on (7), the authors construct a set of moment inequalities to get the identified set

of β, which is, in union bound notation, B. The counterfactual outcome of interest is the

proportion change in exporter numbers θ =
E[dij ;J c

ij ,g(β)]
E[dij ;Jij ,β]

under a different information set

or a different fixed cost, where J c
ij is the counterfactual information set and g(β) is the

counterfactual structural parameter. Given β, the authors show that θ ∈ [λℓ(β), λu(β)]

with λℓ(β) and λu(β) point identified. Consequently, the identified set of θ is given by

(1). Further details of the moment conditions and counterfactuals are given in Appendix

B.3.

Structural counterfactual analysis with union bound identified set is very common

in applied microeconomics, such as industry organization, trade, political economy, etc.

To list a few, see examples Berry, Eizenberg, and Waldfogel (2016), Bombardini, Li,

and Trebbi (2023), Crawford and Yurukoglu (2012), Ciliberto, Murry, and Tamer (2021),

Eizenberg (2014), Jia (2008), Kalouptsidi et al. (2021), Kireyev (2020), Wollmann (2018),

Yang (2020), among many others.

Example 6. (Marginal Treatment Effects). Mogstad et al. (2018) propose a method

to partially identify the policy relevant treatment parameters, exploiting the insight that

the IV estimand and many treatment parameters can be expressed as weighted averages of

the same underlying marginal treatment effects. Assume that the treatment is determined

by

D = 1 [U ≤ p(Z)]

where U is an unobservable with uniform [0, 1] distribution, p(Z) is the propensity score,

and Z are exogenous instruments. Assume that the marginal treatment response func-

tions have parametric form m0(x, u; β) and m1(x, u; β), where m0 and m1 are known

functions, x is other covariates and β are parameters. Let E [s(D,Z)Y ] be an IV-like

estimand using instrument Z, where s(D,Z) is a known function. Then β is partially

identified by

B =

{
β ∈ B : E

[∫ 1

0

m0(u,X; β)s(0, Z)1 [u > p(Z)] du

]
13



+E

[∫ 1

0

m1(u,X; β)s(1, Z)1 [u ≤ p(Z)] du

]
= E [s(D,Z)Y ]

}
where B is the feasible set of structural parameter β. Assume that the target object θ is

the average treatment effect. Then it is point identified by

λℓ(β) = λu(β) = E

[∫ 1

0

m1(u,X; β)du

]
− E

[∫ 1

0

m0(u,X; β)du

]
for a given β, and the identified set of θ is given in (1).

Example 7. (Plausibly Exogenous IVs) Conley et al. (2012) consider an instrumental

variable model when the instruments are only plausibly exogenous:

Y = Xθ + Zβ + U

where Y is the outcome, X is a L1 × 1 endogenous variable and Z is a L2 × 1 vector

of potentially invalid instruments. To simplify the illustration, let L1 = 1. Similar to

Masten and Poirier (2021) in Example 4, under exogeneity E [U |Z] = 0, proper rank

conditions, and given a plausible exogenous value β, the average treatment effect θ is

point identified by

λℓ(β) = λu(β) =
E [XZ ′]E [ZZ ′]E [Z(Y − Zβ)]

E [XZ ′]E [ZZ ′]E [ZX]
.

In their empirical application, Conley et al. (2012) suggest using a continuous relaxation

where

B =
{
β : βj ∈

[
−β̄j, β̄j

]
, j = 1, ..., dim(β)

}
and β̄ is a user chosen tuning parameter. In this case, B is known, which is a degener-

ate case of consistently estimable B, and the inference procedure proposed in Section 4

applies.

3 Inference with Finite B

In this section, I study inference on θ with finite B, and I focus on connected union

bounds where

θ ∈
[
min
β∈B

λℓ(β), max
β∈B

λu(β)

]
since this is the case in all examples with finite B in Section 2.2. A similar inference

procedure applies to general, potentially non-connected, union bounds with the form (1),

which I discuss in Appendix A.3.

To simplify the presentation, I first assume that B is known. In this case, λℓ(β)
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and λu(β) are finite dimensional vectors indexed by β, so I write each of them as |B|
dimensional vectors λℓ and λu, with the b-th element λℓ,b and λu,b. I illustrate with a

normally distributed estimator λ̂n =
(
λ̂ℓ, λ̂u

)
such that

(
λ̂ℓ

λ̂u

)
∼ N

((
λℓ

λu

)
,Σn

)
, Σn =

[
Σℓ,n Σ′

ℓu,n

Σℓu,n Σu,n

]
(8)

with Σn known, where Σℓ,n, Σu,n and Σℓu,n are |B| × |B| matrices. The true value λ =

(λℓ, λu) ∈ Λ and Λ can be a lower dimensional subspace of R2|B|, e.g. as in Example 1. In

general, the normality holds asymptotically with appropriate scaling, and the asymptotic

variance can be consistently estimated. I later present theorems under general DGPs

where this condition holds in Section 3.4.

I propose a modified conditional CI constructed by inverting the test of the null

hypothesis

H0 : min
b∈B

λℓ,b ≤ θ ≤ max
b∈B

λu,b. (9)

The test takes the form

ϕ
(
θ, λ̂n,Σn

)
= 1

[
T̂ (θ) > ĉm(θ;α)

]
,

where T̂ (θ) is the test statistic, and θ is rejected if T̂ (θ) exceeds the modified conditional

critical value ĉm(θ;α). Consequently, the corresponding 1− α confidence interval is

CIm(λ̂n,Σn;α) =

[
inf

ϕ(θ,λ̂n,Σn)=0
θ, sup

ϕ(θ,λ̂n,Σn)=0

θ

]
. (10)

3.1 The Test Statistic

The test statistic has a max-min form

T̂ (θ) = max

{
min
b∈B
Zℓ,b, min

b∈B
Zu,b

}
(11)

where σℓ,b =
√

Σℓ,bb, σu,b =
√

Σu,bb,

Zℓ,b =
λ̂ℓ,b − θ
σℓ,b

, and Zu,b =
θ − λ̂u,b
σu,b

. (12)

Observing that H0 in (9) is equivalent to

H0 : max

{
min
b∈B

(λℓ,b − θ), min
b∈B

(θ − λu,b)
}
≤ 0, (13)
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and the test statistic is constructed by replacing λℓ and λu in (13) by their estimator,

adjusted for the standard deviation. Put another way, the population version of T̂ (θ),

which replaces (λ̂ℓ, λ̂u) with (λℓ, λu), is non-positive if and only if H0 holds.

If we use a simple critical value csim = Φ−1(1− α
2
), then we will get a simple CI

CIsim =

[
min
b∈B

λ̂ℓ,b − σℓ,bΦ−1(1− α

2
), max

b∈B
λ̂u,b + σu,bΦ

−1(1− α

2
)

]
, (14)

which is often used in current practice, see e.g. Kolesár and Rothe (2018), Hasegawa et al.

(2019), Ban and Kedagni (2022). The simple confidence interval is uniformly valid under

mild conditions, see Proposition 2 in Kolesár and Rothe (2018). However, in general, it

can be very conservative. To illustrate, define

bℓ = argmin
b∈B

λℓ,b, bu = argmax
b∈B

λu,b. (15)

and observe that

P
(
θ ̸∈ CIsim

)
= P

(
max

{
min
b∈B
Zℓ,b, min

b∈B
Zu,b

}
> Φ−1(1− α

2
)

)
≤ P

(
max {Zℓ,bℓ , Zu,bu} > Φ−1(1− α

2
)
)

≤ P
(
Zℓ,bℓ > Φ−1(1− α

2
)
)
+ P

(
Zu,bu > Φ−1(1− α

2
)
)

= P

(
λ̂ℓ,bℓ − λℓ,bℓ

σℓ,b
+
λℓ,bℓ − θ
σℓ,b

> Φ−1(1− α

2
)

)
(16)

+ P

(
λu,bu − λ̂u,bu

σu,b
+
θ − λu,bu
σu,b

> Φ−1(1− α

2
)

)
(17)

≤ α

2
+
α

2
= α.

Here the first inequality holds because I replace the minimum of Zℓ and Zu by the value

at bℓ and bu, which may not be the realized minimizers in the sample. The second

inequality follows from P (A ∪B) ≤ P (A) + P (B). The final inequality holds under the

null hypothesis (9).

The potential conservativeness comes mainly from the first and last inequalities. The

first inequality tends to be conservative when the minimum λℓ,bℓ is close to other elements

in λℓ. In such cases, we should consider the minimum of the vector Zℓ instead of merely

Zℓ,bℓ . The same reasoning applies to the upper bound. The last inequality becomes

conservative if the union bound is wide, i.e.

λu,bu − λℓ,bℓ
max {σu,bu , σℓ,bℓ}

≫ 0.
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In such cases, either (16) or (17) is negligible, allowing us to replace Φ−1(1 − α
2
) with

Φ−1(1− α). This scenario is also studied in Imbens and Manski (2004) and Stoye (2009)

for a single bound where |B| = 1. Besides the first and last inequalities, the simple CI is

also conservative because the second inequality does not fully use the joint distribution

of (Zℓ,bℓ ,Zu,bu).

That said, the simple critical value is near optimal in less favorable cases, where both

the minimum and maximum are well separated, and the length of the identified set is

short, i.e.

min
b∈B\bℓ

λℓ,b − λℓ,bℓ
σℓ,b

≫ 0, min
b∈B\bu

λu,bu − λu,b
σu,b

≫ 0,
λu,bu − λℓ,bℓ

min {σℓ,bℓ , σu,bu}
≈ 0. (18)

In such scenarios, the first and last inequalities are close to equality, mitigating any

significant power loss. This implies that csim is nearly optimal among constant critical

values because it protects against the less favorable distributions, although at the cost of

an inflated coverage rate against more favorable DGPs. Therefore, it is crucial to devise

a data-dependent critical value that ensures proper coverage under case (18) but is more

efficient under other DGPs.

3.2 Conditional Critical Value

Following from the previous discussion, I now construct a data dependent critical value

that is valid under less favorable DGPs and more efficient otherwise. To do so, note that

under less favorable DGPs in (18),

P (Eℓ ∪ Eu) ≈ 1 (19)

where6

Eℓ =
{
T̂ (θ) = Zℓ,b̂ℓ

}
∩
{
λℓ,b̂ℓ ≤ θ

}
, (20)

Eu =
{
T̂ (θ) = Zu,b̂u

}
∩
{
λu,b̂u ≥ θ

}
,

b̂ℓ = argmin
b∈Bℓ

Zℓ,b, b̂u = argmin
b∈Bu

Zu,b.

If the critical value ĉ(θ) satisfies

P
(
T̂ (θ) > ĉ(θ) |Eℓ ∪ Eu

)
≤ αc < α, (21)

6If the minimizer of Zℓ is not unique, define b̂ℓ as the smallest element of the minimizers, with an
analogous definition for b̂u.
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the unconditional rejection rate is bounded above by α following from (19). Therefore, I

construct a conditional critical value based on the conditional distribution

T̂ (θ)
∣∣∣T̂ (θ) = Zℓ,b1 and T̂ (θ)

∣∣∣T̂ (θ) = Zu,b2

for b1, b2 satisfying λℓ,b1 ≤ θ ≤ λu,b2 .

Lemma 1. Under H0 and (8). Let b1, b2 satisfy λℓ,b1 ≤ θ ≤ λu,b2 , then

Φ
(
T̂ (θ)

)
− Φ (tℓ,1(θ, b1))

Φ (tℓ,2(θ, b1))− Φ (tℓ,1(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

} FOSD

⪯ Unif(0, 1)

Φ
(
T̂ (θ)

)
− Φ (tu,1(θ, b1))

Φ (tu,2(θ, b1))− Φ (tu,1(θ, b1))

∣∣∣{T̂ (θ) = Zu,b2

} FOSD

⪯ Unif(0, 1)

where

tℓ,1(θ, b) =


min
b̃∈B

(
1 + ρℓu(b, b̃)

)−1 (
Zu,b̃ + ρℓu(b, b̃)Zℓ,b

)
, if min

b̃∈B
ρℓu(b, b̃) > −1

−∞ otherwise

tu,1(θ, b) =


min
b̃∈B

(
1 + ρℓu(b̃, b)

)−1 (
Zℓ,b̃ + ρℓu(b̃, b)Zu,b

)
, if min

b̃∈B
ρℓu(b̃, b) > −1

−∞ otherwise

tℓ,2(θ, b) =


min

b̃∈B:ρℓ(b,b̃)<1

(
1− ρℓ(b, b̃)

)−1 (
Zℓ,b̃ − ρℓ(b, b̃)Zℓ,b

)
if min

b̃∈B
ρℓ(b, b̃) < 1

+∞ otherwise

tu,2(θ, b) =


min

b̃∈B:ρu(b̃,b)<1

(
1− ρu(b̃, b)

)−1 (
Zu,b̃ − ρu(b̃, b)Zu,b

)
if min

b̃∈B
ρu(b, b̃) < 1

+∞ otherwise

ρℓ(b1, b2) =
Σℓ,b1b2

σℓ,b1σℓ,b2
, ρu(b1, b2) =

Σu,b1b2

σu,b1σu,b2
, ρℓu(b1, b2) =

Σℓu,b1b2

σℓ,b1σu,b2
,

and Zℓ, Zu are defined in (12).

Loosely speaking, Lemma 1 implies that the distribution of T̂ (θ) conditional on

T̂ (θ) = Zℓ,b1 is first order stochastically dominated by a truncated normal distribu-

tion T N (0, 1, [tℓ,1(θ, b1), tℓ,2(θ, b1)]), where T N (µ, σ2, [t1, t2]) is a normal distribution

N (µ, σ2) truncated at [t1, t2]. Hence, we can guarantee conditional coverage by using

the 1− αc quantile of T N (0, 1, [tℓ,1(θ, b), tℓ,2(θ, b)]) with α
c < α.

Define the conditional critical value ĉc(θ, αc) as:

ĉc(θ, αc) =

Φ−1
(
αcΦ

(
tℓ,1(θ, b̂ℓ)

)
+ (1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

))
if Zℓ,b̂ℓ

≥ Zu,b̂u

Φ−1
(
αcΦ

(
tu,1(θ, b̂u)

)
+ (1− αc)Φ

(
tu,2(θ, b̂u)

))
if Zℓ,b̂ℓ

< Zu,b̂u

(22)
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where αc ∈ (1
2
α, α) is a user chosen tuning parameter, with a suggested rule of thumb

value 4
5
α. As we will see later, αc trades off the rejection rate under more and less

favorable DGPs.

Proposition 1. Assume that

P
(
Zℓ,b̂ℓ

= Zu,b̂u

)
= 0. (23)

Under H0 and (8), it holds that

P
(
T̂ (θ) > ĉc(θ, αc)

∣∣∣Eℓ ∪ Eu

)
≤ αc. (24)

Under (23), the set Eℓ∪Eu can be partitioned into
{
T̂ (θ) = Zℓ,b1

}
and

{
T̂ (θ) = Zu,b2

}
for b1, b2 satisfying λb1 ≤ θ ≤ λb2 . Hence (24) follows directly from Lemma 1. Condition

(23) holds in most examples previously discussed and is assumed in Proposition 1 for

simplicity. Under more favorable DGPs diverging from (18), the conditional quantile can

be significantly smaller than Φ−1(1− α
2
). To see this, let θ = λℓ,bℓ be the lower bound of

the identified set and assume that T̂ (θ) = Zℓ,b̂ℓ
. If the identified set is very large relative

to the standard deviation, we have

tℓ,1(θ, b̂ℓ) ≤
(
1 + ρℓu(b̂ℓ, bu)

)−1 (
Zu,bu + ρℓu(b̂ℓ, bu)Zℓ,b̂ℓ

)
=
(
1 + ρℓu(b̂ℓ, bu)

)−1
(
λ̂ℓ,b̂ℓ − λ̂u,bu

σu,bu
+

(
ρℓu(b̂ℓ, bu)−

σℓ,b̂ℓ
σu,bu

)
Zℓ,b̂ℓ

)
≈ −∞, (25)

where the approximation ≈ follows from
λ̂ℓ,b̂ℓ

−λ̂u,bu

σu,bu
≈ −∞ for a large identified set. In

this case,

ĉc(θ, αc) ≈ Φ−1
(
(1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

))
≤ Φ−1 (1− αc) < Φ−1(1− α

2
).

Moreover, if the minimum λℓ,−bℓ is not well separated from λℓ,bℓ , then the upper bound

tℓ,2(θ, b̂ℓ) = min
b̃∈B:ρℓ(b̂ℓ,b̃)<1

(
1− ρℓ(b̂ℓ, b̃)

)−1
(
λ̂ℓ,b̃ − λℓ,b̃

σℓ,b̃
+
λℓ,b̃ − λℓ,bℓ

σℓ,b̃
−Zℓ,b̂ℓ

)
+ Zℓ,b̂ℓ

will be the minimum of several random variables, which will further reduce the critical

value.

I next illustrate the conditional critical value using a simple example.

Example 8. (Simple Union Bounds) Consider a simple union bound

θ ∈ [min {λ1, λ2} , max {λ1, λ2}]
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and the estimator satisfies (
λ̂1 − λ1, λ̂2 − λ2

)
∼ N (0, I2) .

The test statistic has the form

T̂ (θ) = max
{
min

{
λ̂1 − θ, λ̂2 − θ

}
,min

{
θ − λ̂1, θ − λ̂2

}}
.

Without loss of generality, assume that T̂ (θ) = λ̂1 − θ. In this case, the conditional

critical value is

ĉc(θ;αc) = Φ−1
(
(1− αc)Φ

(
λ̂2 − θ

)
+ αcΦ

(
θ − λ̂2

))
< Φ−1 (1− αc) < Φ−1

(
1− α

2

)
, (26)

where the first line is by construction, and the first inequality follows from

Φ
(
λ̂2 − θ

)
+ Φ

(
θ − λ̂2

)
= 1.

If the minimizer and maximizer are well separated, e.g. λ1 = θ and λ2 →∞, the efficient

critical value is Φ−1(1 − α), as discussed in Imbens and Manski (2004). In this case, λ̂2

will be large and ĉc(θ;αc) → Φ−1(1 − αc), which is slightly conservative. This follows

from the fact that the conditional critical value is designed to correct for the case when

all elements, except for bℓ and bu, are far away from binding. On the other hand, if λ̂2

is relatively small, then the critical value is smaller. In Figure 2a, I plot the rejection

region for the simple and conditional critical values with α = 0.05 and αc = 0.04. The

red curve is the boundary corresponding to the conditional critical value, and the grey

region is the rejection region for the conditional critical value. Finally, the two square

regions filled with lines are the rejection region of the simple test. The rejection region of

the conditional test is strictly larger than the simple test, resulting in larger power.

It is important to note that ĉc(θ, 1−αc) may not serve as a valid critical value, because

P (Eℓ ∪ Eu) can be much smaller than one when moving away from (18). For that reason,

next, I show how to construct a uniformly valid modified conditional critical value that

retains favorable power properties relative to the simple critical value.

3.3 The Modified Conditional Critical Value

To guarantee proper coverage, I introduce a novel modification to the conditional critical

value:

ĉm(θ;α) = c̃m(θ, ĉt;α) = max
{
ĉc(θ, αc), ĉt

}
(27)
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(a) Conditional Critical Value (b) Modified Conditional Critical Value

Figure 2: Example 8 - Rejection Region

The red curve corresponds to ĉc(θ;αc). The blue solid line represents the lower truncation ĉt. The grey region on the left

panel denotes the rejection region for the test with the conditional critical value ĉc(0;αc), and the one on the right denotes

the rejection region with the modified conditional critical value ĉm(θ, α). The two square regions filled with lines represent

the rejection region of the simple test. In this example, α = 0.05 and αc = 0.04.

where ĉt is defined later in (31).

To illustrate the construction of the lower truncation, let C̃I
m
(c) be the confidence

interval based on (10) with ĉm(θ;α) replaced by c̃m(θ, c;α). Given a potential true pa-

rameter λ, the rejection rate at θ is

p(c; θ, λ) = P
(
θ ̸∈ C̃I

m
(c);λ

)
.

It suffices to define the lower truncation as the minimum value that achieves uniform size

control, i.e.

ct(θ) = inf

{
c ∈ R+ : sup

λ∈Λ0(θ)

p(c; θ, λ) ≤ α

}
, (28)

where Λ0 is the set of feasible λ satisfying H0:

Λ0(θ) =

{
(λℓ, λu) ∈ Λ : min

b∈B
λℓ,b ≤ θ ≤ max

b∈B
λu,b

}
.

Note that ct(θ) ≤ csim = Φ−1(1− α
2
) because

p(csim; θ, λ) ≤ α

from the discussion in Section 3.1. In fact ĉt(θ) is usually significantly smaller than csim.

The intuition is that by virtue of Lemma 1, truncation is unnecessary for DGPs such that

P (Eℓ ∪ Eu;λ) ≥
1− α
1− αc

(29)
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with αc < α, where Eℓ, Eu are defined in (20). Thus we only need to consider truncation

in more favorable DGPs deviating from (18), i.e. when the minimizer or maximizer is not

well separated, in which case a smaller critical value suffices. Given (θ, λ), we can calculate

p(c; θ, λ) by simulation. Nevertheless, calculating C̃I
m
(ct) can be time consuming because

(i) we need to calculate ct(θ) for a grid of θ to get the confidence interval and (ii) Λ0(θ)

is an unbounded set, which slows the computation down.

To improve computational efficiency, I propose a lower truncation that does not de-

pend on θ. First, note that for given λ, either θ ∈ [θℓ, θm] or θ ∈ [θm, θu], where θℓ = λℓ,bℓ ,

θu = λu,bu and θm = (θℓ + θu)/2. As a result, we can bound p(c; θ, λ) by

p(c; θ, λ) ≤max
{
P
(
[θℓ, θm] ̸⊆ C̃I

m
(c);λ

)
, P
(
[θm, θu] ̸⊆ C̃I

m
(c);λ

)}
≤max

{
P
(
T̂ (θℓ) > c̃m(θℓ, c) or

{
T̂ (θm) > c̃m(θm, c) and T̂ (θu) > c̃m(θu, c)

}
;λ
)
,

P
(
T̂ (θu) > c̃m(θu, c) or

{
T̂ (θm) > c̃m(θm, c) and T̂ (θℓ) > c̃m(θℓ, c)

}
;λ
)}

=:p̄(c, λ). (30)

Therefore, it is valid, but conservative, to replace p(c; θ, λ) in (28) with p̄(c, λ). In addi-

tion, to avoid maximization over an unbounded set, let Λ̂ be a 1− η compact confidence

set of λ, such as7

Λ̂η =

(λℓ, λu) ∈ Λ :

∣∣∣λ̂ℓ,b − λℓ,b∣∣∣
σℓ,b

≤ Φ

(
1− η

4|B|

)
,

∣∣∣λ̂u,b − λu,b∣∣∣
σu,b

≤ Φ

(
1− η

4|B|

)
with suggested value η = 0.001. In sum, it suffices to use

ĉt = inf
c

{
c ≥ 0 : sup

λ∈Λ̂η

p̄(c, λ) + η ≤ α

}
, (31)

and p̄(c, λ) is defined in (30). In terms of computation, p̄(c, λ) can be conveniently

calculated via simulation, and we only need to calculate the maximization over a bounded

set once rather than for a grid of θ. In general, with η small enough, ĉt is much smaller

than Φ−1(1 − α
2
) by the intuition explained around (29). Moreover, in many examples,

the feasible space Λ is a lower dimensional subspace of R2|B|, so that the supremum is

taken over a space much smaller than R2|B|, which reduces the computational cost.

The lower truncation ĉt is more likely to bind under more favorable DGPs, and it

decreases in the tuning parameter αc. Hence, αc trades off the power between more and

less favorable DGPs. A larger αc leads to higher power under less favorable DGPs, while

a smaller αc leads to higher power under more favorable DGPs. It is possible to choose

an optimal αc by, e.g., maximizing the weighted average power. I leave this to future

7Section A.1 gives a more efficient Λ̂η set.
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research.

Remark 1. The relaxation in (30) to get p̄(c, λ) is not overly conservative. To see this,

if the identified set is large, θm will be covered by the modified conditional confidence

interval with probability close to 1, so the conservativeness introduced by this relaxation

is negligible.8 Conversely, if the identified set is very small, then the set’s coverage will be

similar to the coverage of a point. Moreover, we can reduce conservativeness by increasing

the number of elements in the partition at the cost of increased computational difficulty.

For instance, we can add the quarter point θ1/4 = (3θℓ + θu)/4 and three-quarter point

θ3/4 = (θℓ + 3θu)/4 in addition to θm, and bound p(c; θ, λ) by

p(c; θ, λ) ≤ max
{
P
([
θℓ, θ1/4

]
̸⊆ C̃I

m
(ct);λ

)
, P
([
θ1/4, θm

]
̸⊆ C̃I

m
(ct);λ

)
P
([
θm, θ3/4

]
̸⊆ C̃I

m
(ct);λ

)
, P
([
θ3/4, θu

]
̸⊆ C̃I

m
(ct);λ

)}
which requires conducting the test at five points θℓ, θ1/4, θm, θ3/4 and θu, but returns a

weakly shorter CI.

Example 8. (Simple Union Bounds, Cont.) For simplicity, in this example I let η = 0.

With α = 0.05 and αc = 0.04, we can calculate that ct = 1.06. In Figure 2b, I plot the

rejection region of the modified conditional test and the simple test. The blue dotted

curve is the boundary corresponding to the lower truncation ct, and the grey region is

the rejection region for the modified conditional test. The rest are the same as in Figure

2a. As we can see, the rejection region of the modified conditional test is strictly larger

than the simple test, leading to power improvements. Compared to the simple rejection

region, the conditional test also rejects if both λ̂1 and λ̂2 are small. The intuition is that

if both λ1 and λ2 are close to zero, then there are multiple approximate minimizers and

maximizers, so we only need a small critical value. The lower truncation ĉt removes some

counter-intuitive values from the rejection region close to H0, e.g.
(
λ̂1 − θ, λ̂2 − θ

)
=

(ε, ε) ≈ (0, 0).

3.4 Size and Power Properties

I now present the conditions under which the modified conditional CI has asymptotic

uniform validity.

Assumption 1. (Known Singularity) There are known |B| × J matrices Aℓ, Au such

that

λℓ = AℓδP , λu = AuδP (32)

8To see this, note that by construction ĉm ≥ 0, so
[
λ̂ℓ,b̂ℓ , λ̂u,b̂u

]
⊆ CIm

(
λ̂n,Σn;α

)
. If

√
n (λu,bu − λℓ,bℓ)→∞, we have P

(
λ̂ℓ,b̂ℓ ≤ θm ≤ λ̂u,b̂u

)
→ 1.
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λ̂ℓ = Aℓδ̂n, λ̂u = Auδ̂n

Σ̂n =
[
A′

ℓ A′
u

]′
Ω̂n

[
A′

ℓ A′
u

]
for some (δP , δ̂n, Ω̂n).

Assumption 2. (Asymptotic Normality) Let BL1 denote the set of Lipschitz functions

which are bounded by 1 in absolute value and have Lipschitz constant bounded by 1. We

assume

lim
n→∞

sup
P∈P

sup
f∈BL1

∣∣∣EP

[
f
(√

n
(
δ̂n − δP

))]
− E [f(ξP )]

∣∣∣ = 0,

where ξP ∼ N (0,ΩP ).

Assumption 3. (Full Rank) Let S denote the set of matrices with eigenvalues bounded

below by e > 0 and above by ē ≥ e. For all P ∈ P, ΩP ∈ S.

Assumption 4. (Consistent Covariance Estimator) We have an estimator Ω̂n that is

uniformly consitent for ΩP ,

lim
n→∞

sup
P∈P

P
(∥∥∥Ω̂n − ΩP

∥∥∥ > ε
)
= 0

for all ε > 0.

Assumption 5. (Confidence Set of (λℓ, λu)) For all η ∈ [0, α
4
), the confidence set Λ̂η

satisfies

lim inf
n

inf
P∈P

P
(
(λℓ, λu) ∈ Λ̂η

)
≥ 1− η.

Assumptions 1, 2, 3 and 4 imply that
√
n
(
λ̂n − λP

)
is asymptotically normal with

a consistently estimable variance. The asymptotic variance is allowed to be singular,

but the source of the singularity, i.e. Aℓ and Au, is known to the researcher. Given

this, we only need to verify whether Aℓ,b1 = −aAu,b2 for some a > 0 to know whether

ρℓu(b1, b2) is at the boundary −1, which simplifies the construction of ĉc(θ, α). These

assumptions hold for the examples in Section 2.2 with finite B under mild conditions,

and I give detailed illustration based on Rambachan and Roth (2023) in Appendix A.5.

Assumption 5 requires that Λ̂ is a uniformly valid 1− η confidence set of (λℓ, λu), e.g. Λ̂

implied by (69) in Section A.1.

Theorem 1. (Uniform Coverage) Suppose Assumptions 1, 2, 3, 4, and 5 hold. Let

α ∈ (0, 1/2), αc ∈ (α
2
, α), η ∈ [0, α−αc

2
). It holds that

lim sup
n→∞

sup
P∈P

sup
θ∈[λℓ,bℓ

,λu,bu ]
P
(
θ ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
≤ α.
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Remark 2. Theorem 1 shows that the modified conditional CI has uniform asymptotic

coverage under a large set of DGPs. Moreover, with some modification, the proposed

method can be applied to cases where Assumption 4 fails. The main idea is that we can

rewrite the union bounds as the union of several sub-union bounds, with Assumption 4

holding in each sub-union bound. By taking the union of CIs for each sub-union bound,

we can get a valid CI for θ. I illustrate this in Example 9 in Appendix A.4.

Remark 3. The same inference procedure and coverage property apply when B is unknown

but consistently estimable in the sense that dH

(
B̂,B

)
p−→ 0 uniformly where dH is the

Hausdorff distance and B̂ ⊆ B is the estimator for B. B is a finite outer set of B. The

reason is that for finite B, there is ε > 0 such that

lim inf
n

inf
P∈P

P
(
B̂ = B

)
= lim inf

n
inf
P∈P

P
(
dH

(
B̂,B

)
< ε
)
= 1. (33)

Therefore, asymptotically we can treat B̂ as the true set without adjusting the estimation

uncertainty. Masten and Poirier (2021) and Apfel and Windmeijer (2022) implicitly

assume (33) in their empirical applications, see Example 4 for more discussion.

Next, I compare the modified CI to two existing approaches which are also uniformly

valid: (i) the simple CI given in (14), and (ii) the adjusted bootstrap CI proposed in Ye

et al. (2023).

Theorem 2. (Power Comparison with Simple CI) Suppose Assumptions 1, 2, 3, and 4

hold. And Λ̂η is defined as in (68). Let α ∈ (0, 1
2
), αc ∈ (α

2
, α), η ∈ [0, α−αc

2
). If one of

the following two conditions hold

1. (Symmetric Bounds)Aℓ = Au, and Pn satisfies

lim sup
P∈Pn

max
b1∈B

min
b2∈B

ρℓ(b1, b2) < ρ∗1(α, α
c), (34)

lim sup
P∈Pn

ρℓ(bℓ, bu) < ρ∗2(α, η), (35)

where ρ∗1(α, α
c) and ρ∗2(α, η) are defined in Lemma 10 and Lemma 7, respectively.9

2. (Large Bounds) Let κn = o(
√
n) and κn →∞, and

Pn =

{
P ∈ P : λu,bu − λℓ,bℓ ≥

κn√
n

}
. (36)

It holds that

1. Modified conditional CI is shorter: there is α′ > α such that

lim inf
n

inf
P∈Pn

P
(
CIm

(
λ̂n, Σ̂n/n;α

)
⊆ CIsim

(
λ̂n, Σ̂n/n;α

′
))

= 1. (37)

9Here ρ̂ℓ(b1, b2) = ρ̂u(b1, b2) = ρ̂ℓu(b1, b2), so I only impose restrictions on ρ̂ℓ.
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2. Modified conditional CI has higher power: for all Pn ∈ Pn, there is a subsequence

Pan and κ ∈ (0,+∞) thus that

lim inf
an→∞

Pan

(
θan ̸∈ CIm

(
λ̂an , Σ̂an/an;α

))
−Pan

(
θan ̸∈ CIsim

(
λ̂an , Σ̂an/an;α

))
> 0.

(38)

for θn = θℓ − κ√
n
. The same applies to the upper bound.

The first part of Theorem 2 considers the case where the upper and lower bounds are

symmetric, as in Kolesár and Rothe (2018), Masten and Poirier (2021), and Rambachan

and Roth (2023). If the correlation coefficients among λ̂ℓ are not too large, the modified

conditional CI is strictly shorter than the simple CI. The upper bounds ρ∗1(α, α
c) and

ρ∗2(α, η) can be easily solved for numerically, and I list the value for a few combinations:

ρ∗1(0.05, 0.04) = 0.84, ρ∗1(0.10, 0.08) = 0.83,

ρ∗2(0.05, 0.001) ≈ 1, ρ∗2(0.10, 0.001) ≈ 1.

The values are large and thus the restriction (34) is not binding in most applications.

The second part of Theorem 2 compares the modified conditional CI with the simple

CI in a different set of DGPs. It shows that if the identified set is relatively large compared

to the standard deviation of the estimators, which is O( 1√
n
), the modified conditional CI

is shorter than the simple CI with probability approaching one. The intuition follows

from the discussion around (25).

Next, I compare the modified conditional CI with the adjusted bootstrap procedure

proposed by Ye et al. (2023). Their bootstrap procedure relies on a random draw of a

subsample with size m = n
κn
, and thus the convergence rate of the confidence interval to

the identified set is
√
m, slower than

√
n.

Theorem 3. (Power Comparison with Ye et al. (2023)) Let CIYKHS
(
λ̂n, Σ̂n/n;α

)
be the

adjusted bootstrap procedure proposed in Hasegawa et al. (2019) Algorithm 1 equation (15)

with tuning parameter m = n
κn
, where κn →∞ and κn = o(n). Let a > 0, κ′n = o(

√
κn),

κ′n →∞. Define local alternatives

θn = min
b∈B

λℓ,b −
κ′n√
n
a, or θn=max

b∈B
λu,b +

κ′n√
n
a.

Then

lim inf
n→∞

inf
P∈P

P
(
θn ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= 1 (39)

lim sup
n→∞

sup
P∈P

P
(
θn ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
≤ α

Theorem 3 follows from the convergence rate of CIYKHS and CIm. The sequence of

26



θn is rejected by the modified conditional CI with probability approaching one following

from Lemma 2, while it is rejected by CIYKHS with probability bounded above by α.

Hence, CIm has large power improvement upon CIYKHS.

4 Inference with Infinite B

In this section, I explore the inference procedure with potentially infinite B. This ap-

proach has broad applications in counterfactual analysis within a structural model, where

B represents the identified set of the structural parameters, and the target object θ is the

counterfactual of interest.

The identified set of θ can be expressed as

θ ∈
⋃
β∈B

[λP,ℓ(β, φP ), λP,u(β, φP )] ,

where B ⊆ B is formed by the moment inequalities:

EP [mj(Xi; β, φP )] ≤ 0, j = 1, ..., J1, (40)

EP [mj(Xi; β, φP )] = 0, j = J1 + 1, ..., J1 + J2, (41)

as is often the case in empirical applications. Here, B is the known parameter space

of β, {Xi}ni=1 is an independent and identically distributed (i.i.d.) sequence of random

variables with distribution P and (m1, ...,mJ1+J2)
′ : Rd × B × Φ → RJ1+J2 is a known

measurable function of a finite dimensional parameter vector (β, φ) ∈ B × Φ. In turn, φ

is a nuisance parameter with a point identified true value φP , which can be estimated in

a preliminary step without using the moment inequalities in (40) and (41). Additionally,

I assume that

φP = φ† (EP [mφ (Xi)]) , (42)

where mφ and φ† are known measurable functions. Given a potential true value β, the

object θ is bounded by λP,ℓ(β, φP ) and λP,u(β, φP ). For this, I assume that

λP,k(β, φ) = λ†k (EP [mk (Xi; β, φ)]) k = ℓ, u, (43)

where mk : Rd×B×Φ → Rdk , λ†k : Rdk → R are known and measurable functions. I give

a detailed illustration in Section 5.2 based on Dickstein and Morales (2018).

It is important to note that (42) and (43) impose that estimands are functions of

moments of the data. However, it suffices to have that the asymptotic distributions of

the estimators for (λP,ℓ, λP,u, φP , EP [mj(X; β, φ)]) can be easily approximated.
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4.1 Notation

To begin, I define the estimators used for inference. I treat moment equalities as two

opposing moment inequalities and define J = J1 + 2J2 moments by letting

mJ = (m1, ...,mJ1+J2 ,−mJ1+J2+1, ...,−mJ1+2J2) .

Then, define

m̄J (β, φ) =
1

n

n∑
i=1

mJ (Xi; β, φ) ,

m̄k (β, φ) =
1

n

n∑
i=1

mk (Xi; β, φ) , k = ℓ, u,

m̄φ =
1

n

n∑
i=1

mφ (Xi) .

Intuitive point estimators for λP,k(β, φP ), k = ℓ, u, are given by

λ̂k(β) = λ†k (m̄k (β, φ̂)) , (44)

with first step estimator φ̂ = φ† (m̄φ).

Next, I present the covariance matrix for the asymptotic distribution of

Gn(β) =
√
n

 m̄J (β, φ̂)− EP [mJ (X; β, φP )]

λ̂ℓ(β)− λℓ,P (β, φP )

λ̂u(β)− λu,P (β, φP )

 . (45)

Let

ΩP (β) = varP

((
m′

J (X; β, φP ), m′
ℓ(X; β, φP ), m′

u(X; β, φP ), m′
φ(X)

)′)
denote the covariance matrix for the moments evaluated at (β, φP ). The variation of

Gn(β) arises from two sources: (i) the use of sample averages for expectations, which

comes from the variation in m′
J ,mℓ,mu; and (ii) the estimation uncertainty in φ̂, which

comes from the variation in mφ. Define the Jacobian matrix of the estimator

(
m̄J (β, φ̂)

′, λ̂ℓ(β), λ̂u(β)
)′
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with respect to the moments as

GP (β) =

 IJ , 0, 0, ∇φ′E [m(X; β, φP )]∇′φ†

0, ∇′λ†ℓ, 0, ∇φ′λP,ℓ(β, φP )∇′φ†

0, 0, ∇′λ†u, ∇φ′λP,u(β, φP )∇′φ†

 . (46)

Then the first source of the variation of Gn(β) is captured by the first three block columns

of GP while the second one is captured by the last block column of GP . In (46), ∇′λ†k
is short for ∇m′λ†k(m)

∣∣∣
E[mk(β,φP )]

with k = ℓ, u and ∇′φ† is short for ∇m′φ†(m)
∣∣
E[mφ(X)]

.

Under mild regularity conditions, the asymptotic variance of Gn(β) is given by

ΣP (β) = GP (β)ΩP (β)G
′
P (β).

Throughout the paper, I assume that there exist consistent estimators Ĝ(β), Ω̂(β) for

GP (β), ΩP (β), respectively. A computationally simple and intuitive estimator of Σ̂(β) is

Σ̂(β) = Ĝ(β)Ω̂(β)Ĝ′(β).

To simplify notation, let

σ̂j(β) =

√
Σ̂jj, ∀j = 1, ..., J, σ̂ℓ(β) =

√
Σ̂J+1(β), σ̂u(β) =

√
Σ̂J+2(β), (47)

σ̂uℓ(β) =

√[
01×J , 1, −1

]
Σ̂(β)

[
01×J , 1, −1

]′
where σ̂uℓ(β) is the estimated variance of

√
n
(
λ̂u(β)− λ̂ℓ(β)− λP,u(β, φP ) + λP,ℓ(β, φP )

)
.

Define σj(β), σℓ(β), σuℓ(β) as in (47) with Σ̂ replaced by Σ.

Lastly, let

DP,k(β) =
∇β′λP,k(β, φP )

σP,k(β, φP )
, k = ℓ, u, (48)

DP,j(β) =
∇β′E [mj(X; β, φP )]

σP,j(β, φP )
, j = 1, ..., J, (49)

be the Jacobian of the objective and moment conditions with respect to the parameter β

normalized by the standard deviation. Furthermore, assume the existence of consistent

estimators D̂k(β) and D̂j(β).
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4.2 The Confidence Interval

The confidence interval has the following form

CIn =

[
inf
β∈B̂

λ̂ℓ(β)−
σ̂ℓ(β)√
n
ĉn(β), sup

β∈B̂
λ̂u(β) +

σ̂u(β)√
n
ĉn(β)

]
, (50)

where B̂ is an estimator for B defined as

B̂ =

{
β ∈ B :

√
nm̄j(β, φ̂)

σ̂j(β)
≤ ĉn(β), ∀j = 1, ..., J

}
, (51)

and ĉ(β) is the critical value specified below. The same critical value is used for both

the moment restrictions and the bounds λ̂ℓ, λ̂u. The main reason is that, for both the

objective and moment conditions, the critical value provides an upper bound for a normal

random variable with a non-positive expectation and unit variance, and consequently it

is natural to use the same critical value.10 In addition, it is computationally easier than

calibrating multiple critical values.

Next, I define the critical value ĉn(β). The critical value is given by

ĉn(β) = max {ĉu(β), ĉℓ(β)} , (52)

where for k = ℓ, u, [ℓ] = u, [u] = ℓ,

ĉk(β) = inf

{
c ∈ R+ : P

(
min

∆∈∆n(β,c)
Zs

k(β) + D̂k(β)∆ ≤ c, and (53)

min
∆∈∆n(β,c)

Zs
[k](β) + D̂[k](β)∆ + ζ̂0(β) ≤ c

∣∣∣∣ {Xi}ni=1

)
≥ 1− α

}
, (54)

and the random feasible set for ∆ is

∆n(β, c) =
{
∆ ∈

√
n(B − β) ∩ ρ [−1, 1]d :

Zs
j(β) + D̂j(β)∆ + ζ̂j(β) ≤ c, j = 1, . . . , J

}
.

(55)

The elements in (53), (54), and (55) are listed below.

1. Zs
J (·),Zs

ℓ(·),Zs
u(·) is simulated from

(
Zs

J (β)
′,Zs

ℓ(β),Zs
u(β)

)′∣∣∣ {Xi}ni=1 ∼ N
(
0, diag

(
Σ̂(β)

)−1/2

Σ̂ (β) diag
(
Σ̂(β)

)−1/2
)

2. ζ̂j(β), ζ̂0(β) in (54) and (55) are generalized moment selection (GMS) type functions

10To see this, (60), (62), (63) have similar structure with non-positive last term
E[mj(β,φP )]

σP,j(β,φP )/
√
n
,

λP,ℓ(β)−θ

σP,ℓ(β)/
√
n
,

θ−λP,u(β)

σP,u(β)/
√
n
respectively.
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defined as

ζ̂j(β) =

0 if
√
nm̄j(β,φ̂)

κnσ̂j(β)
≥ −1 or j = J1 + 1, ..., J

−∞ otherwise

ζ̂0(β) =

0 if
√
n(λ̂u(β)−λ̂ℓ(β))

κn max{σ̂u(β),σ̂ℓ(β),σ̂uℓ(β)}
≤ 1

−∞ otherwise

where κn = o(n
1
4 ) and κn → ∞, with a suggested value

√
lnn. It is easy to see

that if ζ̂0(β) = 0, it holds numerically that ĉℓ(β) = ĉu(β); and if ζ̂0(β) = −∞, the

constraint with Zs
[k](β) in (54) is negligible.

3. ρ > 0 is a user-chosen tuning parameter with the recommended rule of thumb value

ρ = Φ−1

1

2
+

1

2

(
1− η/

(
J1 + J2 + 2

d

))1/d
 (56)

with η = 0.01. The critical value ĉn(β) is weakly decreasing in ρ, thus a larger

ρ returns a shorter confidence interval. Nevertheless, uniform validity of inference

requires ρ <∞.

Note that (53), (54), (55) are linear in ∆. Therefore, with polyhedral B, which is a

frequent scenario in practice, the computation of the critical value ĉ(β) can be simplified

to the process of solving linear programs.

The construction of the confidence interval uses the insights of Kaido et al. (2019),

and the intuition is as follows. By definition, there is some “true value” β ∈ B such that

θ ∈ [λP,ℓ(β, φP ), λP,u(β, φP )] .

A sufficient condition for θ being covered is that there exists

β̃ ∈ B ∩
{
β +

ρ√
n
[−1, 1]d

}
(57)

such that (i) θ is covered

λ̂ℓ(β̃)−
σ̂ℓ(β̃)√
n
ĉn(β̃) ≤ θ ≤ λ̂u(β̃) +

σ̂u(β̃)√
n
ĉn(β̃) (58)

and (ii) the moment conditions are not rejected

√
nm̄j(β̃)

σ̂j(β̃)
≤ ĉn(β̃), ∀j = 1, ..., J. (59)

That said, we only need to calibrate ĉ(β̃) such that (58) and (59) hold with probability no
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less than 1− α for some β̃ in the true value β’s local neighborhood, without considering

the coverage of β itself. This returns a much smaller critical value than uncalibrated

projection, which covers the structural parameter β with prespecified probability in the

first step.

In (57), β̃ is restricted to a local neighborhood of β, and the tuning parameter ρ defines

its boundary. This allows us to linearize (58) and (59), so that they can be approximated

by (53, 54) and (55), respectively. As for (59), a first-order Taylor expansion gives

√
nm̄j(β̃)

σ̂j(β̃)
≈Gn,j(β)

σP,j(β)
+DP,j(β)∆ +

√
nE [mj(β, φP )]

σP,j(β)
(60)

where ∆ =
√
n(β̃ − β), Gn, DP , and σP are defined in (45), (49) and below (47), re-

spectively. In (55), I replace
Gn,j(β)

σP,j(β)
and DP,j(β) with their feasible analogs. In addition,

it is well known that the last term
√
nE[mj(β,φP )]

σP,j(β)
can not be consistently estimated, but

can be conservatively approximated by the GMS function proposed in D. W. K. Andrews

and Soares (2010). Therefore, (55) is a valid approximation of the moment restrictions

in (59). Similarly, (58) is equivalent to

λ̂ℓ(β̃)− θ
σ̂ℓ(β̃)/

√
n
≤ ĉ(β̃),

θ − λ̂u(β̃)
σ̂u(β̃)/

√
n
≤ ĉn(β̃). (61)

Local approximations of the standardized λ̂ℓ(β), λ̂u(β) are

λ̂ℓ(β̃)− θ
σ̂ℓ(β̃)/

√
n
≈Gn,ℓ(β)

σP,ℓ (β)
+DP,ℓ(β)∆ +

λP,ℓ (β)− θ
σP,ℓ (β) /

√
n

(62)

θ − λ̂u(β̃)
σ̂u(β̃)/

√
n
≈Gn,u(β)

σP,u (β)
+DP,u(β)∆ +

θ − λP,u(β)
σP,u (β) /

√
n
. (63)

The approximations for (62, 63) are similar to the moment restrictions, except for the

last term
λP,ℓ(β)−θ

σP,ℓ(β)/
√
n
and

θ−λP,u(β)

σP,u(β)/
√
n
. Here, θ is unknown and partially identified, thus the

GMS function does not directly apply. However, observe that if

√
n (λP,u(β)− λP,ℓ(β))

κnmax {σP,u(β), σP,ℓ(β), σP,uℓ(β)}
→ ∞, (64)

either
λP,ℓ(β)−θ

σP,ℓ(β)/
√
n
or

θ−λP,u(β)

σP,u(β)/
√
n
would go to −∞ and at least one inequality in (61) is not

binding with probability approaching one. Otherwise, we can replace both terms with

zero if (64) does not hold, which introduces a conservative distortion, which in turn leads

to the restriction in (53) and (54).

Remark 4. The construction of ĉn uses the insights from Kaido et al. (2019) but with two

main differences. First, Kaido et al. (2019), as well as many moment inequality papers,

32



assume that all parameters are jointly estimated by a set of moment conditions, while

in this paper, I allow for first-step plug-in estimator φ̂ and suggest an easy adjustment

for its estimation uncertainty. Second, the target object of Kaido et al. (2019) has form

θ = λ(β) with a known function λ(·), while my paper assumes that θ ∈ [λℓ(β), λu(β)] with

λℓ(·) and λu(·) estimated. In addition, the definition of Jacobian DP,j in (49) is different

from Kaido et al. (2019), where DKMS
P,j (·) = ∇β′

{
E [mj(X; ·)]

/
σP,j(·)

}
. Note that under

mild conditions, DP,j(·) and DKMS
P,j (·) are asymptotically equivalent for βn ∈ B such that

the moment is close to binding, i.e. E [mj(X; βn)] = o(1). If E [mj(X; βn)] is bounded

away from zero, DP,j(·) and DKMS
P,j (·) become irrelevant, since in this case, moment j is

either slack or rejected with probability approaching one. I use the definition in (49) as

it is easier to calculate. Moreover, the analogous Jacobian for λk defined in (48) follows

directly from the Taylor expansion in (62)-(63), where the denominators are fixed.

Remark 5. The construction of the CI relies on test inversion over the structural pa-

rameter space, which can be time-consuming. However, the E-A-M algorithm proposed

by Kaido et al. (2019) can enhance computational efficiency with certain modifications.

Refer to Appendix B.1 for further discussion.

4.3 Asymptotic Results

I present next the assumptions that are important for proper coverage.

Let Bε
be the ε expansion of B

Bε
=
{
β ∈ Rd : d(β,B) ≤ ε

}
.

Assumption 6. B ⊂ Rd is a compact hyperrectangle with nonempty interior.

Assumption 6 restricts the shape of the parameter space. It is satisfied in most

applications and guarantees that the calculation in (53) can be obtained with simple

linear programs.

Assumption 7. Let

DP =
[
DP,1(β)

′ ... DP,J(β)
′ DP,ℓ(β)

′ DP,u(β)
′
]′
.

There is M <∞, ε > 0 such that for all P ∈ P, for all β, β̃ ∈ Bε

∥∥∥GP (β)−GP (β̃)
∥∥∥ =M

∥∥∥β − β̃∥∥∥ ,∥∥∥DP (β)−DP (β̃)
∥∥∥ ≤M

∥∥∥β − β̃∥∥∥ ,
∥GP (β)∥ ≤M, ∥DP (β)∥ ≤M.

Assumption 8. The following conditions hold uniformly over P.

33



1. There exists estimator D̂(β) such that

sup
β∈Bϵ

∥∥∥D̂(β)−DP (β)
∥∥∥ = oP (1).

2. For all ε > 0, the estimator Ĝ(β) satisfies

lim inf
n

inf
P∈P

P

(
sup
m≥n

sup
β∈B

∥∥∥Ĝ(β)−GP (β)
∥∥∥ ≤ ϵ

)
= 1.

Assumption 7 imposes that the derivatives DP and GP are sufficiently smooth in their

arguments, and Assumption 8 requires consistent estimators for the Jacobian DP and GP .

Under these two assumptions, we can approximate the Taylor expansion in (60), (62),

(63) with feasible analogs.

Assumption 9. For some constants ω > 0, ε > 0, all distributions P ∈ P satisfy the

following condition. Let

J1(P, β; ε) =

{
j ∈ {1, · · · , J1} :

EP [mj (Xi; β, φP )]

σP,j(β, φP )
≥ −ε

}
, (65)

Jk(P, β; ε) =

{u, ℓ, J1 + 1, ..., J1 + J2} if τ0,P,β ≥ −ε

{k, J1 + 1, ..., J1 + J2} otherwise
(66)

where

τ0,P,β =
λP,ℓ (β, φP )− λP,u (β, φP )

max {σP,ℓ(β), σP,u(β), σP,uℓ(β)}
.

Then for k = ℓ, u,

inf
β∈B

eig
(
ΣJ1(P,β;ε)∪Jk(P,β;ε)

)
≥ ω,

where eig(Σ) is the smallest eigenvalue of Σ.

Note that J1(P, β; ε)∪Jk(P, β; ε) is the collection of moments that are close to binding.

Assumption 9 imposes that the covariance matrix for those moments is non-singular. In

Assumption 11 in Appendix D.2, I relax this assumption by allowing the covariance

matrix of paired moments to have a singular limit at the cost that the sum of two paired

moments should be non-positive for all samples. This is an analog of Kaido et al. (2019)

Assumption E3.2.

Theorem 4. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9

or 11 holds. Let 0 < α < 1/2. Then

lim inf
n→∞

inf
P∈P

inf
θ∈

⋃
β∈B[λP,ℓ(β),λP,u(β)]

P (θ ∈ CIn) ≥ 1− α.
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Assumptions 10, which is a regularity condition for the moments, can be found in

Appendix D.2.

5 Simulation

In this section, I study the size and power properties of the proposed procedures and

compare them to several alternatives.

5.1 When B is Finite

When B is finite, I conduct simulations in the context of Example 1, i.e. relaxation of

the parallel trends assumption as in Rambachan and Roth (2023). Besides the modified

conditional confidence interval proposed in Section 3, I consider two existing procedures

for union bounds: (i) the adjusted bootstrap in Ye et al. (2023), (ii) the simple confidence

interval in (14), and (iii) the inference procedure in Rambachan and Roth (2023).11 All

three methods are uniformly valid. All tuning parameters are set at the values in the

papers in which they are proposed.

Each sample {Yi}ni=1 and estimator is generated by

Yi ∼ N (γ, nΣ) , γ̂ =
1

n

∑
Yi ∼ N (γ,Σ) .

The inference is conducted using the pair (γ̂,Σ). The covariance matrix Σ is calibrated

from the empirical results reported in (i) Dustmann et al. (2022) Figure 7(c), (ii) Benzarti

and Carloni (2019) Figure 2(E), (iii) Lovenheim and Willén (2019) Figure 3(A), and (iv)

Christensen, Keiser, and Lade (2023) Figure 5(b). Specifically, Σ is set to be the estimated

covariance matrix for t = −T , ...,−1, 1, where T is reported under Figure 3. For each

Σ, I considered three true values for γ: (i) the parallel trends assumption holds, i.e.

γpre = 0T ; (ii) there is a small violation of the parallel trends, where γpre is calibrated

from the same source as Σ; (iii) there is a large violation, where γpre = (10σM , 0T−1),

σM = maxb∈B {σℓ,b}. Without loss of generality, I normalize γpost = 0 in all DGPs. In

sum, I consider 4×3 = 12 empirically motivated DGPs. Note that the simulation results

of the modified conditional CI, the Rambachan and Roth (2023) CI, and the simple CI

are invariant to n, while YKHS depends on n because of a subsampling step. In this

simulation, I set n = 5000 and S = 1000 sample draws.

In Figure 3, I plot the rejection rate near the upper bound. The lower bound is

11Ye et al. (2023) propose two CIs for the parameter of interest in their Algorithm 1 equation (15):
one with the tuning parameter m/N → 0,m → ∞ and the other with m = N . The second one is not
uniformly valid, and thus I only consider the first one with m = N/ log(log(N)) as suggested in their
Section S1.4. For Rambachan and Roth (2023), I use their hybrid conditional CI with tuning parameter
η = α

10 , which is the default choice in their code.

35



similar and thus omitted. The horizontal axis is the value of θ, while the vertical axis is

the rate that θ is not included in the CI. The asterisks represent the identified set, and

the nominal rejection rate is 10%. The modified conditional CI is the red curve and it

has proper size control in all simulation designs. The simple CI is the black dotted curve

and it has significantly lower power than modified conditional CI in all designs.

Rambachan and Roth (2023) CI is plotted in blue dashed curves. The performance of

Rambachan and Roth (2023) varies with the DGPs, and the power is usually between the

modified conditional CI and simple CI, see e.g. Figure 3a, 3b, and 3d. In some DGPs,

Rambachan and Roth (2023) may perform worse than the simple CI, e.g. in Figure 3g.

When there is only one large violation, for example in Figure 3i-3l, the minimum and

maximum of the union bound are well-separated from other bounds, and Rambachan and

Roth (2023) is near optimal by their Corollary 3.1. In this case, the modified conditional

CI has a slightly smaller rejection rate and is close to optimal.

YKHS is plotted in green circled curves. YKHS has slightly higher power than the

modified conditional CI for points very close to the identified set but often suffers from

large power loss for points farther away, see e.g. all designs except Figure 3c and 3g. This

is consistent with the slower convergence rate of the YKHS CI to the identified set and

Theorem 3.

In Table 3 in Appnedix A.2, I report the median CIs.12 I compare the differences

between the length of median CIs and the length of the union bound estimates, as a

measure of efficiency.13 The difference of the modified conditional CI is the shortest,

or slightly larger than the shortest, in all DGPs. It significantly reduces the value of

Rambachan and Roth (2023) (resp. YKHS, simple CI) by a proportion up to 43% (resp.

32%, 37%).

5.2 When B is Infinite

When B is infinite, I use the setting of the simulation in Dickstein and Morales (2018).

Consider a simple trade model with i = 1, ..., N firms deciding whether to export to a

foreign market f , f = 1, ..., K. The revenues in home and foreign markets are determined

by

rh = X1 +X2 +X3,

rf = φfrh + e.

12A median CI is the median lower bound of the 1−α CI to the median upper bound, and the median
is taken over S samples.

13The consistent union bound estimate is
[
minb∈B λ̂ℓ,b, maxb∈B λ̂u,b

]
.
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lé
n
(2
0
1
9
)
w
it
h
T

=
9
,
a
n
d
(µ

4
,Σ

4
)
fr
o
m

C
h
ri
st
en

se
n
et

a
l.
(2
0
2
3
)
w
it
h
T

=
1
5
.

37



Table 1: Simulation Results unknown B with α = 0.1

# markets Identified Set Calibrated Projection CI (%) Bonferroni CI (%)

Median CI Coverage Median CI Coverage

K = 1 [2.344, 5.359] [0.247, 10.176] [99.8, 99.7] [0.178, 11.457] [100, 99.9]

K = 4 [2.344, 5.359] [0.233, 10.226] [99.8, 99.8] [0.161, 11.559] [100, 99.9]

K = 8 [2.344, 5.359] [0.237, 10.356] [99.9, 99.7] [0.158, 11.682] [100, 99.9]

The expected profit of export is given by

pf = η−1E [rf | J ]− β̃2 − β̃1ν,

where η is the elasticity, J is the information set the firms have when making the export

decision, and (X1, X2, X3, ν) ∼ N (0, I4). Then the decision is given by

d = 1

[
η−1E [rf | J ]

1

β̃1
− β̃2

β̃1
− ν ≥ 0

]
= 1

[
η−1E [φfrh| J ] β1 − β2 ≥ ν

]
where β1 = β̃−1

1 , β2 = β̃−1
1 β̃2. This reparameterization is just for simplicity. The re-

searcher observes (X, rh, d, drf ) and a subset of the information set Z ⊆ J . The pa-

rameters are (φf , β1, β2), and η = 2 is known to both the researcher and firms.14 The

counterfactual of interest is the change in the number of exporters if the information set

changes from Jsmall = {X1} to Jlarge = {X1, X2, X3}. The details of moment conditions

and counterfactual outcomes are given in Appendix B.2.

In this simulation, I set the sample size NK = 2000, and the simulation is based

on S = 1000 sample draws. The nominal rejection rate is α = 0.1. The true value is

(β1, β2) = (1, 0.5) and φf = 0.5 for all f = 1, ..., K. In Table 1, I report the calibrated

projection CI using the inference proposed in Section 4, as well as a Bonferroni type CI

defined as

CIBon =

[
min

β∈B̃1−α
2

λ̂ℓ(β, φ̂)− Φ−1(1− α

4
)σ̂ℓ(β), max

β∈B̃1−α
2

λ̂u(β, φ̂) + Φ−1(1− α

4
)σ̂u(β)

]
,

where B̃1−α
2
is a 1 − α

2
confidence set of B calculated based on D. W. K. Andrews and

Soares (2010). This Bonferroni CI is a valid alternative to the new CI, but less efficient,

especially when the dimension of β is large. Both the Bonferroni CI and the calibrated

projection CI have proper coverage, but the length of the calibrated CI is smaller than

the Bonferroni CI.

14Note that this is in fact a normalization since η and β1 cannot be identified separately.
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6 Empirical Illustration

6.1 Sensitivity Analysis for Effects of the Minimum Wage

In this section, I apply the modified conditional CI to the sensitivity analysis in Dust-

mann et al. (2022). The authors study the labor market effects of the minimum wage

implemented by the German government in January 2015, impacting approximately 15%

of the workforce. The minimum wage policy remains a subject of considerable controversy

within the labor market, as it simultaneously addresses wage inequality while potentially

leading to disemployment. One main conclusion of Dustmann et al. (2022) is that the

minimum wage increase resulted in higher wages without causing a decline in employment

levels.

To study the employment effect, the authors estimate the DiD design

log(emprt) =
2016∑

τ=2011,τ ̸=2014

γτGAP r1 [τ = t] + αr + ξt + εrt (67)

where log(emprt) is the log employment in district r, time t; GAP r is a measure of

the exposure to the minimum wage; αr and ξt are district and year fixed effects. The

parameter vector γ is the event study coefficients with γ2014 normalized to zero. Figure 4a

shows the estimated coefficients {γ̂τ} from specification (67). Under the parallel trends

assumption, the high and barely exposed districts evolved at the same rate in the absence

of the minimum wage policy. In this context, the coefficients γ2015 and γ2016 in the post-

policy years serve as measures for the employment effects of the minimum wage policy.

However, Figure 4a indicates that the coefficients γ2011, γ2012 and γ2013 in the pre-policy

years are not statistically or economically indistinguishable from zero. Hence, it is evident

that the parallel trends assumption does not hold. Consequently, the authors conduct

sensitivity analysis using Rambachan and Roth (2023), as detailed in their Appendix

A.14.

In particular, the authors conduct the sensitivity analysis using the second differences

relative magnitudes (SDRM) relaxation. This approach assumes that

|(ξ2015 − γ2014)− (γ2014 − γ2013)| ≤M max
s=2014,2013

|(γs − γs−1)− (γs−1 − γs−2)| ,

where ξ2015 represents the potential differential trend without the minimum wage policy.

Essentially, without the minimum wage policy, the slope change at t = 2015 is bounded

above by a factor of M times the previous slope changes. M measures the level of

relaxation. This aligns with the approximately linear pretrend observed in Figure 4a. The

employment effect of interest is quantified as γ2015−ξ2015. That is, with one unit increase in

GAP and other covariates fixed, the employment rate will increase by 100(γ2015− ξ2015)%
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Figure 4: Empirical Illustration for finite B with α = 0.05

in expectation.

In Figure 4b, I report the 95% confidence intervals for different values ofM constructed

based on three different methods: the modified conditional CI proposed in Section 3, the

hybrid CI in Rambachan and Roth (2023), and the simple CI in (14).15 We can clearly

see that the modified conditional CI is the shortest and the simple CI is the widest for

all M , and the improvement of the modified conditional CI upon the simple CI doubles

the improvement of Rambachan and Roth (2023) upon the simple CI.

The authors compare the minimum wage induced disemployment effects and wage

effects. To do so, they estimate the wage effect using the same DiD design as (67) with

regressor log(wagert). After adjusting the linear pretrend, the point estimate of the wage

effect at t = 2015 is 0.6, represented by a dashed line (with an inverse sign) in Figure 4b.

The authors are interested in whether the employment effect is robustly higher than −0.6,
leading to an employment elasticity with respect to own wage less than 1 in absolute value.

When using the natural benchmark M = 1, only the modified conditional CI is above

the negative wage effect. It is also informative to report the “breakdown” relaxation at

which the wage effect is no longer larger than the (negative) employment effect. In this

case, the breakdown M for the hybrid CI is around 0.75, while the one for the simple CI

is around 0.6. Remarkably, the breakdown relaxation M of my method is 33% to 66%

larger than the other two.

6.2 Counterfactual Analysis for Exporter’s Information Set

Dickstein and Morales (2018) study how the information possessed by potential exporters

influences their export decisions. A challenge in modeling firms’ decisions lies in the fact

that these decisions are contingent upon firms’ expectations of export profit, which are

15The estimated coefficient and covariance are available but the data for regression is confidential, thus
I can not implement the Ye et al. (2023) bootstrap procedure.
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rarely directly observable by researchers. Previous literature often makes the strong as-

sumption that firms’ expectations are rational and depend on a set of variables available in

the data, which carries the risk of model misspecification. Different from earlier research,

Dickstein and Morales (2018) do not require full knowledge of an exporter’s information

set. Instead, they specify only a subset of the variables that agents use to form their

expectations. The trade-off of this approach is that it results in partial identification

of the structural parameters and counterfactuals. The empirical results show that, on

average, the number of exporters decreases when firms have access to better information.

However, this change varies with firm size.

The model details are given in Appendix B.3. In this model, the structural parameter

β is partially identified by moment inequalities as in (40) with J1 = 48, J2 = 0. The

moment conditions contain 220 plug-in estimands φP,1,...,φP,220, with each corresponding

to a specific market. The plug-in estimands are determined independently of the moment

inequalities. The counterfactual of interest, denoted as θ, is the percentage change in the

number of exporters if the information set changes from the smallest available to perfect

foresight. The smallest information set includes the firm’s own domestic sales in the

previous year, sectoral aggregate exports in the previous year, and the distance variable.

Given a specific structural parameter β, there exists a point-identified pair λℓ(β, φP ) and

λu(β, φP ) that bounds the counterfactual outcome.

The original 95% CI in Dickstein and Morales (2018), denoted as CIDM18, is computed

as follows:

CIDM18 =

[
min

β∈B̃1−α

λ̂ℓ(β), max
β∈B̃1−α

λ̂u(β)

]
.

Here B̃1−α is a 1−α confidence set for β, calculated based on D. W. K. Andrews and Soares

(2010) treating the estimator φ̂ as the true value. This interval is reported in the first row

in Table 2, and it gives statistically significant results in all three subsamples. However,

CIDM18 does not account for the estimation uncertainty in λ̂ℓ, λ̂u and φ̂, making it

potentially invalid. Additionally, it is unclear how CIDM18 compares to the new confidence

interval. On the one hand, CIDM18 lacks validity and may be too narrow; on the other

hand, it is a projection of the confidence set B̂1−α, which can be unnecessarily wide.

To decompose these two effects, I first validate CIDM18 by appropriately adjusting for

estimation uncertainty with

CIDM18 adj =

 min
β∈B̂1−α

2

λ̂ℓ(β)− Φ−1(1− α

4
)σ̂ℓ(β), max

β∈B̂a
1−α

2

λ̂u(β) + Φ−1(1− α

4
)σ̂u(β)

 .
Here B̂a

1−α
2
is the 1 − α

2
confidence set of β that takes into account the estimation un-

certainty in φ̂. CIDM18 adj employs the same projection method used in Dickstein and

Morales (2018), but with a Bonferroni-type adjustment, ensuring its validity. This inter-
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Table 2: Percentage Change in Number of Exporters, α = 0.05

Firm All Large Small
DM18 [-10.2, -6.1] [-17.3, -12.7] [0.3, 0.5]
DM18 - Bonferroni ajusted [-22.9, 1.5] [-30.4, -0.8] [-0.1, 1.4]
New [-20.4, -1.6] [-27.4, -8.7] [ 0, 1.2]

val is reported in the second row. CIDM18 adj is considerably wider and crosses zero for

all-firm and small-firm samples. In the third line, I report the new CI calculated by the

calibrated projection method proposed in Section 4. The calibrated projection method,

which is not only valid but also more efficient, is shorter than CIDM18 adj and restores

statistical significance, signing the effect of the change in the number of exporters under

perfect foresight.

7 Conclusion

In this paper, I propose inference procedures for a target object whose identified set is

a union of bounds. When the union is taken over a finite set, I introduce a novel mod-

ified conditional CI based on a truncated conditional critical value, which significantly

improves upon existing procedures over a large set of DGPs. Empirical examples include

sensitivity analysis in DiD and RDD, bunching strategies to identify the elasticity of

taxable income, and misspecification in instrumental variable models. When the union

is taken over an infinite set, I propose a calibrated projection CI, which is computation-

ally attractive and applicable to structural counterfactual analysis in general moment

inequality settings.

There are a few directions for future work. For finite B, the important tuning pa-

rameter αc trades off the rejection rate between less and more favorable DGPs, and the

suggested rule of thumb value is 4
5
α. It would be useful to consider a choice of αc that

optimizes some objective function, for example, weighted average power. In addition, the

idea of modified conditional inference could potentially apply to other non-standard infer-

ence problems like directionally differentiable functions. This idea does not impose shape

restrictions, e.g. convexity, on the null space. Lastly, for both finite and infinite B, my

inference procedures assume a correct specification that the union bound is non-empty.

If the model is misspecified, the confidence interval can be an empty set or spuriously

short. It would be interesting to consider misspecification robust inference for general

union bounds, in the spirit of Stoye (2020) and D. W. K. Andrews and Kwon (2023).
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Appendix

A Additional Results for Finite B

A.1 Implementation Details

Below I give a step by step implementation algorithm.

1. Input δ̂n, Ω̂n, α, α
c, Aℓ, Au, η, ε, where ε is the computational tolerence. I suggest using

αc = 4
5α and η = 0.001.

2. Construct a 1− η confidence set ∆̂ for δ:

Λ̂ =
{
(Aℓδ, Auδ) ∈ Λ : δ ∈ ∆̂

}
, (68)

∆̂ =

{
δ :
|δ̂j − δj |
ω̂j

≤ ĉη, ∀j = 1, ..., J

}
(69)

where ω̂j =
√

Ω̂jj and

ĉη = Q

(
max

j=1,...,J
|Z∗

j |, 1− η
)

with Z∗ ∼ N
(
0,diag(Ω̂)−

1
2 Ω̂diag(Ω̂)−

1
2

)
.

3. Calculate ĉt:

(a) Initialize c = 0, c̄ = Φ−1(1− α
2 ).

(b) Let c = (c+ c̄)/2 and calculate

p = inf
δ∈∆̂

p̄ (c, (Aℓδ, Auδ)) .

If p < α, c̄ = c; if p ≥ α, c = c.

(c) If c̄− c > ε, go to 3b;

If c̄− c ≤ ε, ĉt = (c+ c̄)/2.

4. Construct the confidence interval by a grid search over an outer set of CIh given in (10).

(a) Initialize θ = minb∈Bℓ
λ̂ℓ,b − Φ−1(1− η)σ̂ℓ,b.

(b) Calculate T̂ (θ) and ĉh(θ;α).

(c) If T̂ (θ) > ĉm(θ;α), let θ = θ + ε.

• If θ ≤ maxb∈Bu λ̂u,b +Φ−1(1− η)σ̂u,b Go to Step 4b

• If θ > maxb∈Bu λ̂u,b +Φ−1(1− η)σ̂u,b. The confidence interval is CIm = ∅, exit
the algorithm.

If T̂ (θ) ≤ ĉm(θ;α), θ1 = θ.
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(d) Initialize θ = maxb∈Bu λ̂u,b +Φ−1(1− η)σ̂u,b.

(e) Calculate T̂ (θ) and ĉm(θ;α).

(f) If T̂ (θ) > ĉm(θ;α), θ = θ − ε. Go to Step 4e

If T̂ (θ) ≤ ĉm(θ;α), θ2 = θ.

5. The confidence interval is CIm = [θ1, θ2].

It is possible for the confidence interval to be empty, indicated by an output of ∅. This can

occur when the model is misspecified and the lower bound exceeds the upper bound. How-

ever, if the realized minimizer is consistently smaller than the maximizer, which is the case in

Rambachan and Roth (2023), Kolesár and Rothe (2018), and Masten and Poirier (2021), the

modified conditional confidence interval is non-empty. It would also be interesting to consider

misspecification robust inference for general union bounds, in the spirit of Stoye (2020) and

I. Andrews et al. (2019), but this is outside the scope of this paper and I leave it for future

research.

A.2 More Simulation Results

Median Confidence Intervals

In Table 3, I report the median CIs.16 In the second row of each panel, I report the dif-

ferences between the length of median CIs and the length of median point estimates, i.e.[
maxb∈B λ̂ℓ,b, maxb∈B λ̂u,b

]
. The difference is a measure of the efficiency, net of the effect of

identified set length. The difference of the modified conditional CI is the shortest, or slightly

larger than the shortest, in all DGPs. It reduced the value of Rambachan and Roth (2023)

(resp. YKHS, simple CI) by a proportion up to 43% (resp. 32%, 37%), see third panel with

small violation (resp. fourth panel with parallel trends, fourth panel with parallel trends).

Different Values of αc

In Figure 5, I report the rejection rate with three different values of αc ∈ (α2 , α). The rejection

rates are not overly sensitive to the tuning parameter αc, and under all choice of αc, the rejection

rate of modified conditional CI is higher than the simple CI. We can also see that αc trades

off the power under more and less favorable DGPs. When the bounds are well separated, e.g.

Figure 5i - 5l, the rejection rate increases in αc. In contrast, when the bounds are close to each

others, e.g. Figure 5c and 5g, smaller αc gives higher power for alternatives closer to the null.

Different Sample Sizes

The sample is simulated from

Yit =
∑
s ̸=0

ξs1[t = s]Di + ξX,1X1it + ξX,2X2it + εit, (70)

16A median CI is the median lower bound of the 1−α CI to the median upper bound, and the median
is taken over S samples.
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Table 3: Simulation Results for known B - Median CI

Point Modi. Con. RR23 YKHS Simple

Dustmann et al. (2022) T = 3

Parallel CI [-0.188, 0.188] [-0.470, 0.456] [-0.505, 0.492] [-0.486, 0.502] [-0.578,0.565]

[0, 0] Diff. 0.550 0.621 0.612 0.768

Small Vio. CI [-0.196, 0.195] [-0.467, 0.475] [-0.504, 0.505] [-0.492, 0.504] [-0.576,0.581]

[−0.080, 0.080] Diff. 0.551 0.619 0.605 0.766

Large Vio. CI [-2.508, 2.503] [-2.857, 2.852] [-2.840, 2.836] [-2.955, 2.995] [-2.920, 2.916]

[−0.316, 0.316] Diff. 0.698 0.666 0.939 0.825

Benzarti and Carloni (2019) T = 4

Parallel CI [-0.028, 0.029] [-0.058, 0.059] [-0.067, 0.067] [-0.070, 0.074] [-0.075, 0.075]

[0, 0] Diff. 0.061 0.077 0.088 0.093

Small Vio. CI [-0.085, 0.085] [-0.120, 0.119] [-0.121, 0.122] [-0.130, 0.140] [-0.130, 0.130]

[−0.080, 0.080] Diff. 0.069 0.073 0.101 0.090

Large Vio. CI [-0.316, 0.317] [-0.359, 0.354] [-0.358, 0.354] [-0.374, 0.368] [-0.368, 0.363]

[−0.316, 0.316] Diff. 0.080 0.079 0.109 0.098

Lovenheim and Willén (2019) T = 9

Parallel CI [-0.909, 0.884] [-1.886, 1.867] [-2.341, 2.343] [-1.709, 1.800] [-2.235, 2.236]

θ ∈ [0, 0] Diff. 1.960 2.891 1.715 2.678

Small Vio. CI [-1.360, 1.354] [-2.261, 2.225] [-2.927, 2.893] [-2.193, 2.194] [-2.590, 2.567]

[−0.993, 0.993] Diff. 1.772 3.106 1.673 2.442

Large Vio. CI [-9.366, 9.332] [-10.034, 10.174] [-9.999, 10.128] [-10.201, 10.483] [-10.153, 10.323]

[−9.350, 9.350] Diff. 1.509 1.428 1.985 1.778

Christensen et al. (2023) T = 15

Parallel CI [-0.108, 0.108] [-0.197, 0.195] [-0.225, 0.227] [-0.233, 0.242] [-0.247, 0.249]

[0, 0] Diff. 0.176 0.236 0.259 0.280

Small Vio. CI [-0.279, 0.281] [-0.391, 0.409] [-0.391, 0.405] [-0.431, 0.445] [-0.416, 0.434]

[−0.276, 0.276] Diff. 0.240 0.236 0.316 0.290

Large Vio. CI [-0.932, 0.933] [-1.040, 1.029] [-1.036, 1.025] [-1.084, 1.064] [-1.062, 1.047]

[−0.934, 0.934] Diff. 0.204 0.196 0.283 0.243
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Table 4: Rejection Rate (%) Under Different Sample Sizes α = 0.1

ξ Parallel Trends Small Violation Large Violation
Σ Σ1 Σ2 Σ3 Σ4 Σ1 Σ2 Σ3 Σ4 Σ1 Σ2 Σ3 Σ4

n = 125 1.3 2.2 0 0.9 3.4 3.7 5.5 11.3 10.3 11.9 9 10
n = 500 1.2 1.5 0 1.1 4 5.8 8.8 9.2 8.5 8.6 8.6 9.4
n = 2000 1.6 2 0 1.1 8.3 8.9 9.4 8.4 9.2 8.6 9.7 9.8

with i = 1, ..., n, t = 1, ..., T . Let E[D] = r = 0.6, X1,it ∼ N (0, 1), X2,it ∼ t(5), εi ∼ N (0,Σε)

and Σε = Σ/ΣTT r. E[ξ] and Σ are defined as in Section 5.1, and E[ξX ] = 0. I consider three

sample sizes, n = 125, 500, 2000. The maximum rejection rate of θ in the identified set is

reported in Table 4. There are only slight over rejection with n = 125.

A.3 Potentially Non Connected Union Bounds

In this section, I illustrate how to apply the modified conditional inference idea to potentially

non-connected union bounds defined by

θ ∈
⋃
b∈B

[λℓ,b, λu,b] .

The confidence interval is constructed by inverting the test of the hypothesis

H0 : min
b∈B

max {λℓ,b − θ, θ − λu,b} ≤ 0.

The corresponding 1− α confidence interval is

CIm(λ̂n,Σn;α) =
{
θ : T̂ (θ) ≤ ĉm(θ;α)

}
.

I illustrate with a normally distributed estimator λ̂n =
(
λ̂ℓ, λ̂u

)
satisfying (8). To simplify

notation, assume that θ ∈ [λℓ,b∗ , λu,b∗ ].

The test statistic is defined as

T̂ (θ) = min
b∈B

max

{
λ̂ℓ,b − θ
σℓ,b

,
θ − λ̂u,b
σu,b

}
.

The simple CI uses the same test statistic and a simple critical value csim = Φ−1(1− α
2 ), which

gives confidence interval

CIsim =
⋃
b∈B

[
λ̂ℓ,b − σℓ,bcsim, λ̂u,b + σu,bc

sim
]
.

The simple critical value is conservative because

P
(
T̂ (θ) > Φ−1(1− α

2
)
)
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=P

(
min
b∈B

max

{
λ̂ℓ,b − θ
σℓ,b

,
θ − λ̂u,b
σu,b

}
> Φ−1(1− α

2
)

)

≤P

(
max

{
λ̂ℓ,b∗ − θ
σℓ,b∗

,
θ − λ̂u,b∗
σu,b∗

}
> Φ−1(1− α

2
)

)

≤P

(
λ̂ℓ,b∗ − θ
σℓ,b

> Φ−1(1− α

2
)

)
+ P

(
θ − λ̂u,b∗
σu,b

> Φ−1(1− α

2
)

)
≤α
2
+
α

2
≤ α

The first inequality is conservative if the bounds are not well separated, i.e. the Hausdorff

distance between bounds is much larger than the standard deviations. The third inequality is

conservative if the bound is relatively large. However, csim is not overly conservative under the

less favorable DGPs where the bounds are well separated and short, i.e.

min
b∈B\{b∗}

d ([λℓ,b∗ , λu,b∗ ], [λℓ,b, λu,b])≫ max
b∈B
{σℓ,b, σu,b}, λℓ,b∗ ≈ λu,b∗ . (71)

Under the less favorable DGPs in (71), the probability

P

(
T̂ (θ) = max

{
λ̂ℓ,b∗ − θ
σℓ,b∗

,
θ − λ̂u,b∗
σu,b∗

})

is close to one and therefore, I will construct the conditional critical value based on

T (θ)
∣∣∣T (θ) = Ẑℓ,b∗ or T (θ)

∣∣∣T (θ) = Ẑu,b∗ .

Specifically, let

ĉc(θ, αc) =

Φ−1
(
αcΦ

(
tℓ,1(θ, b̂)

)
+ (1− αc)Φ

(
tℓ,2(θ, b̂)

))
if Ẑℓ,b̂ ≥ Ẑu,b̂

Φ−1
(
αcΦ

(
tu,1(θ, b̂)

)
+ (1− αc)Φ

(
tu,2(θ, b̂)

))
if Ẑℓ,b̂ < Ẑu,b̂

where

tℓ,1(θ, b) =

minb̃∈B̂ℓ

(
1 + ρℓu(b, b̃)

)−1 (
Zu,b̃ + ρℓu(b, b̃)Zℓ,b

)
if minb̃∈B̂ℓ

ρℓu(b, b̃) > −1

−∞ if minb̃∈B̂ℓ
ρℓu(b, b̃) = −1

tu,1(θ, b) =

minb̃∈B̂u

(
1 + ρℓu(b̃, b)

)−1 (
Zℓ,b̃ + ρℓu(b̃, b)Zu,b

)
if minb̃∈B̂u

ρℓu(b̃, b) > −1

−∞ if minb̃∈B̂ℓ
ρℓu(b̃, b) = −1

tℓ,2(θ, b) =min

{
min

b̃∈Bℓ(b)\Bℓu(b)

Zℓ,b̃ − ρℓ(b, b̃)Zℓ,b

1− ρℓ(b, b̃)
,

min
b̃∈Bℓu(b)

max

{
Zℓ,b̃ − ρℓ(b, b̃)Zℓ,b

1− ρℓ(b, b̃)
,
Zu,b̃ + ρℓu(b, b̃)Zℓ,b

1 + ρℓu(b, b̃)

}}
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tu,2(θ, b) =min

{
min

b̃∈Bu(b)\Buℓ(b)

Zu,b̃ − ρu(b, b̃)Zu,b

1− ρu(b, b̃)

min
b̃∈Buℓ(b)

max

{
Zu,b̃ − ρu(b, b̃)Zu,b

1− ρu(b, b̃)
,
Zℓ,b̃ + ρuℓ(b̃, b)Zu,b

1 + ρuℓ(b̃, b)

}}

with

Bℓ(b) =
{
b̃ ∈ B : ρℓ(b, b̃) = 1

}
,

Bu(b) =
{
b̃ ∈ B : ρu(b, b̃) = 1

}
,

Bℓu(b) =
{
b̃ ∈ B̂ℓ : ρℓu(b, b̃) = −1

}
,

Buℓ(b) =
{
b̃ ∈ B̂u : ρℓu(b̃, b) = −1

}
.

The modified conditional critical value is defined as

ĉm(θ;α) = c̃m(θ, ĉt(θ);α) = max
{
ĉc(θ, αc), ĉt(θ)

}
.

The lower truncation ĉt as the minimum value that achieves uniform size control, i.e.

ct(θ) = inf

{
c ∈ R+ : sup

λ∈Λ0(θ)
p(c; θ, λ) ≤ α

}

where Λ0 is the set of feasible λ satisfying H0:

Λ0(θ) =

{
(λℓ, λu) ∈ Λ : min

b∈B
λℓ,b ≤ θ ≤ max

b∈B
λu,b

}
.

A.4 Violation of Assumption 4

As previously mentioned, when Assumption 4 fails, we can rewrite the union bounds as the

union of several sub-union bounds, with Assumption 4 holding in each sub-union bound. Then

we can apply the union principle by taking the union of CIs for each sub-union bound to get a

valid CI for θ.

Example 9. Assume that B = {1, 2}, Aℓ =
[
I 02×2

]
, Au =

[
02×2 I

]
, and

Ωn =

 1 1− 1
n

1− 1
n 1

I2×2

 .
In this case, the limit of Ωn is singular and consequently Assumption 4 fails. However, we can

write

θ ∈ [min {λℓ,1, λℓ,2} , max {λu,1, λu,2}] = Θ1 ∪Θ2
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where δ1 = (δ1, δ3, δ4)
′, δ2 = (δ2, δ3, δ4)

′, Ω1
n = Ω2

n = I3,

Θ1 = [λℓ,1, max {λu,1, λu,2}] =
[
min
b∈B

Ãℓ,bδ
1, max

b∈B
Ãu,bδ

1

]
,

Θ2 = [λℓ,2, max {λu,1, λu,2}] =
[
min
b∈B

Ãℓ,bδ
2, max

b∈B
Ãu,bδ

2

]
,

Ãℓ =
[
12×1 02×2

]
, Ãu =

[
02×1 I2

]
.

Therefore, Assumption 4 holds for Θ1 and Θ2, and we can get uniformly valid 1− α CI C̃I
m,1

,

C̃I
m,2

separately. Then, it is easy to verify that C̃I
m,1
∪ C̃I

m,2
is a uniformly valid 1−α CI for

θ, though at the cost of a potential efficiency loss.

A.5 Union Bounds in Rambachan and Roth (2023)

Consider a simple panel data model t = −T , ..., T . Let γ ∈ RT+T be a vector of “event study”

coefficients, which can be decomposed as

γ =

(
γpre

γpost

)
=

(
ξpre

τ + ξpost

)
.

The target object θ = ι′τ is the weighted average of ATT of post policy years, and ξ is a bias

from a difference in trend. Here ξpre =
(
ξpre−T , ..., ξ

pre
−1

)
, ξpost =

(
ξpost1 , ..., ξpost

T

)
and γ0 = ξpre0 is

normalized to zero. In this section, I show that under relative magnitude relaxation and second

differences relative magnitude relaxation, the identified set of the target object is a union bound.

Relative Magnitudes

Under the relative magnitude relaxation, we assume that the violation of parallel trends at

time t ≥ 1 is bounded above by the maximum pre-policy trend difference∣∣∣ξpostt − ξpostt−1

∣∣∣ ≤M max
s=−1,...,−T

∣∣ξpres+1 − ξ
pre
s

∣∣ , (72)

Note that

ξpost =


ξpost1

ξpost2 − ξpost1 + ξpost1
...

ξpost
T
− ξpost

T−1
+ · · ·+ ξpost2 − ξpost1 + ξpost1

 =


1

1 1
. . .

1 1 · · · 1




ξpost1

ξpost2 − ξpost1
...

ξpost
T
− ξpost

T−1

 = L∆post

where

L =


1

1 1
. . .

1 1 · · · 1


︸ ︷︷ ︸

T×T

,∆post =


ξpost1

ξpost2 − ξpost1
...

ξpost
T
− ξpost

T−1

 .
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The parameter of interest is

ι′
(
γpost − ξpost

)
= ι′γpost −Mι′L∆post

∈
[
ι′γpost −M

∣∣ι′L∣∣1T×1∆̄, ι′γpost +M
∣∣ι′L∣∣1T×1∆̄

]
,

where |ι′L| is the vector of absolute value of each element in ι′L, where

∆̄ = max
s=−1,...,−T

∣∣ξpres+1 − ξ
pre
s

∣∣ .
Let

∆pre =


ξpre1−T − ξ

pre
−T

...

ξpre−1 − ξ
pre
−2

ξpre0 − ξpre−1

 , δ︸︷︷︸
T+1

=

(
ι′γpost

∆pre

)
.

And we have

θ ∈
[

min
b=1,..,2T

λℓ,b, max
b=1,..,2T

λu,b

]
where

λℓ = λu = Aδ,

A =

[
1T×1, M |ι′L|1T×1IT
1T×1, −M |ι′L|1T×1IT

]
.

Second Differences Relative Magnitudes

Under the second difference relative magnitude relaxation, we assume that the violation of

linear trend at time t ≥ 1 is bounded above by the maximum pre-policy linear trend violation

|(ξt − ξt−1)− (ξt−1 − ξt−2)| ≤M max
s=−1,...,−T

|(ξs+1 − ξs)− (ξs − ξs−1)| . (73)

For t ≥ 1, let

∆t = (ξt − ξt−1)− (ξt−1 − ξt−2)

and it is easy to get

ξt − ξt−1 = −ξ−1 +
t∑

j=1

∆j ,

⇒ ξt = −tξ−1 +
t∑

k=1

k∑
j=1

∆j ,

For t = 1, ..., T , let

Lt =
t(t+ 1)

2
, Ht = t.
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The target object is bounded by

ι′τ = ι′γpost − ι′ξpost

∈
[
ι′γpost + ι′Hξ−1 − ι′LM∆̄, ι′γpost + ι′Hξ−1 + ι′LM∆̄

]
In this example,

θ ∈
[

min
b=1,..,2T

λℓ,b, max
b=1,..,2T

λu,b

]
where

λℓ = λu = Aδ,

Aℓ = Au =

[
1, ι′LMIT pre−1

1, ι′LMIT pre−1

]
,

δ =


ι′γpost + ι′Hξ−1

∆−T pre+2

...

∆0

 .

B Additional Results for Infinite B

B.1 A Modified E-A-M Algorithm based on Kaido et al. (2019)

Kaido et al. (2019) provide an E-A-M algorithm to improve the computational efficiency of the

grid search. For completeness, I provide below the full version of the E-A-M algorithm. This

follows closely from Kaido et al. (2019), with the main difference in the M step.

I illustrate with the upper bound of the CI, and the lower bound is symmetric. The goal is

to solve the optimization problem

sup
β∈B

λ̂u(β) +
σ̂u(β)√

n
ĉn(β), s.t.

√
nm̄n,j(β)

σ̂j(β)
≤ ĉn(β).

Initialization: Draw randomly (uniformly) over B a set
(
β(1), . . . , β(k)

)
of initial evaluation

points. Evaluate ĉn
(
β(ℓ)

)
for ℓ = 1, . . . , k − 1. Initialize L = k.

E-step: Record the tentative optimal value

λ̂u(β
∗,L) +

σ̂u(β
∗,L)√
n

ĉn(β
∗,L)

=max

{
λ̂u(β

(ℓ)) +
σ̂u(β

(ℓ))√
n

ĉn(β
(ℓ)) : ℓ ∈ {1, . . . , L}, ḡ(β(ℓ)) ≤ ĉn

(
β(ℓ)

)}
,

with ḡ(β) = maxj=1,...,J

√
nm̄n,j(β)
σ̂j(β)

.

A-step: Approximate β 7→ ĉn(β) by a flexible auxiliary model. We use a Gaussian-process

regression model, denoted by a mean-zero Gaussian process ζ(·) indexed by β and with constant
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variance ς2:

Y (ℓ) = µ+ ζ
(
β(ℓ)

)
, ℓ = 1, . . . , L,

Corr
(
ζ(β), ζ

(
β′
))

= Kγ

(
β − β′

)
, β, β′ ∈ B,

where Y (ℓ) = ĉn
(
β(ℓ)

)
and Kγ is a kernel with parameter vector γ ∈

∏d
h=1 [γh, γ̄h] ⊂ Rd

++.

For instance, Kγ (β − β′) = exp
(
−
∑d

h=1 |βh − β′h|
2 /γh

)
. The unknown parameters

(
µ, ς2

)
can be estimated by a GLS regression of Y =

(
Y (1), . . . , Y (L)

)′
on a constant with the given

correlation matrix. The unknown parameters γ can be estimated using a (concentrated) MLE.

The predictor of the critical value is given by

cL(β) = µ̂+ rL(β)
′R−1

L (Y − µ̂1),

where rL(β) is a vector whose ℓ th component is Corr
(
ζ(β), ζ

(
β(ℓ)

))
as given above with

estimated parameters, and RL is an L-by-L matrix whose (ℓ, ℓ′) entry is Corr
(
ζ(β(ℓ)), ζ(β(ℓ

′))
)

with estimated parameters. The uncertainty left in ĉn(·) is captured by the variance

ς̂2s2L(β) = ς̂2

(
1− rL(β)

′R−1
L rL(β) +

(
1− 1′R−1

L rL(β)
)2

1′R−1
L 1

)
.

M-step: With probability 1− ϵ, obtain the next evaluation point β(L+1) as

β(L+1) ∈ argmax
β∈B

EL(θ)

= argmax
β∈B

σ(β)

(
ϕ (x∗(β)) ς̂sL(β) +

(
λ̂u(β)− λ̂u(β∗,L)− n−

1
2 σ̂u(β

∗,L)ĉn(β
∗,L)

σ̂u(β)
+ cL(β)

)
Φ (x∗(β))

)
,

where EL(β) is the expected improvement function and

x∗(β) = (ς̂sL(β))
−1

(
cL(β)−max

{
ḡ(β),

λ̂u(β
∗,L) + n−

1
2 σ̂u(β

∗,L)ĉn(β
∗,L)− λ̂u(β)

σ̂u(β)

})
.

This step can be implemented by standard nonlinear optimization solvers, for example, MAT-

LAB’s fmincon. With probability ϵ, draw β(L+1) randomly from a uniform distribution over B.
Set L← L+ 1 and return to the E-step.

B.2 Simulation Details

Following Dickstein and Morales (2018), φ = (φ1, ..., φK) is identified by

φf =
cov (rf , rh|d = 1)

var (rh|d = 1)
= φ† (E [mφf

(W )
])
,

where

φ† (a1, a2, a3, a4) =
a1 − a3a4
a2 − a24

,

mφf
(W ) =

(
drhrf ′ , dr2h, drf , drh

)
1[f ′ = f ].
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Importantly, (β1, β2) is partially identified by the set of moment conditions:

m1 (W ;β, φ) = −d
1− Φ

(
η−1φfrhβ1 − β2

)
Φ (η−1φfrhβ1 − β2)

+ (1− d)

m2 (W ;β, φ) = −(1− d)
Φ
(
η−1φfrhβ1 − β2

)
1− Φ (η−1φfrhβ1 − β2)

+ d

m3 (W ;β, φ) = (1− d)
(
η−1φfrhβ1 − β2

)
− d

ϕ
(
η−1φfrhβ1 − β2

)
Φ (η−1φfrhβ1 − β2)

m4 (W ;β, φ) = −d
(
η−1φfrhβ1 − β2

)
− (1− d)

ϕ
(
η−1φfrhβ1 − β2

)
1− Φ (η−1φfrhβ1 − β2)

The moment conditions are given by

E [g(Z)⊗m] ≤ 0.

The counterfactual of interest for given (β, φ) is given by

λℓ(β, φ) = λu(β, φ) =
E
[
Φ
(
η−1φfrhβ1 − β2

)]
E [Φ (η−1φfX1β1 − β2)]

− 1

= λ†
(
E
[
Φ
(
η−1φfrhβ1 − β2

)]
, E
[
Φ
(
η−1φfX1β1 − β2

)])
where

λ†(a1, a2) =
a1
a2
.

B.3 Empirical Details with Dickstein and Morales (2018)

All firms located in a country h, indexed by i = 1, . . . , N , decide whether to sell in each export

market j with j = 1, . . . , J . In the first period, firms determine the set of countries to which

they intend to export. In the second period, upon entering a foreign market, all firms optimally

set their prices and realize the associated export profits.

In the second period, the revenue firm i would obtain if it were to sell in market j is rij and

rij = φjrih + eij (74)

Firms do not know eij when deciding whether to export to market j and

Ejt [eij | Jij , rih, fij ] = 0 (75)

where fij is the fixed cost and Jij is the information available to firm i when deciding whether

to participate in market j. The export profits that i would obtain in j is

πij = η−1rij − fij ,
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where η is the demand elasticity. The fixed export costs is

fij = β̃1 + β̃2distj + vij ,

where dist denotes the distance from country h to country j, and the term vijt represents

determinants of fijt that the researcher does not observe. Firms know fijt when deciding

whether to export to j at t and

vij | (Jij , dist j) ∼ N
(
0, β̃23

)
In the first period, a risk-neutral firm i will decide to export to j if and only if

dij = 1
{
η−1E [φjrih | Jij ]β1 − β2 − β3distj ⩾ vij/β̃3

}
(76)

where β = (β1, β2, β2) = ( 1
β̃3
, β̃1

β̃3
, β̃2

β̃3
) and the probability that i exports to j at t conditional on

Jij and distj is

E [dij | Jij , distj ] = Φ
(
η−1E [φjrih | Jijt]β1 − β2 − β3distj

)
. (77)

Moment conditions

Odds-Based Moment Inequalities: For any Zij ⊆ (Jij , distj), we define the conditional odds-

based moment inequalities as

Mob (Zij ;β, φ) = E

 mob
l

(
dij , r

o
ij , distj ; θ

)
mob

u

(
dij , r

o
ij , distj ; θ

) | Zij

 ⩾ 0

where roij = E [φjrih|Jij ] and the two moment functions are defined as

mob
l (·) = dij

1− Φ
(
η−1roijβ1 − β2 − β3distj

)
Φ
(
η−1roijβ1 − β2 − β3distj

) − (1− dij) ,

mob
u (·) = (1− dij)

Φ
(
η−1roijβ1 − β2 − β3distj

)
1− Φ

(
η−1roijβ1 − β2 − β3distj

) − dij .
Revealed Preference Moment Inequalities: For any Zij ⊆ (Jij , distj), we define a conditional

revealed preference moment inequality as

Mr (Zijt;β, φ) = E

 mr
l

(
dijt, r

o
ijt, distj ; θ

)
mr

u

(
dijt, r

o
ijt, distj ; θ

) | Zijt

 ⩾ 0,
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where the two moment functions are defined as

mr
l (·) =− (1− dij)

(
η−1roijβ1 − β2 − β3distj

)
+ dij

ϕ
(
η−1roijβ1 − β2 − β3distj

)
Φ
(
η−1roijβ1 − β2 − β3distj

) ,
mr

u(·) =dij
(
η−1roijβ1 − β2 − β3distj

)
+ (1− dij)

ϕ
(
η−1roijβ1 − β2 − β3distj

)
1− Φ

(
η−1roijβ1 − β2 − β3distj

) .
Counterfactuals

1. Changes in Information Sets J c
ij . The number of exporter

N ex
c1 =

∑
i

Φ
(
η−1rocij β1 − β2 − β3distj

)
where

rocij = E
[
αjrih|J c

ij

]
We are interested in the change of exporter numbers θ =

E[Nex
c1 ]

E[Nex] .

2. Changes in Fixed Export Costs: a reduction in exporters’ fixed costs of 40%. Suppose

Zijt ⊆ Jijt and, for any β ∈ B, define

N ex
c2 =

∑
i

Φ

η−1 E [αjrih | Jij ]︸ ︷︷ ︸
not point identified

β1 − β2 − β3distj


Then, ∑

i

1

1 +Bl (Zij ;β)
⩽ N ex

c2 ⩽
∑
i

Bu (Zij ;β)

1 +Bu (Zij ;β)
,

where

Bl (Zij ;β, φ) = E

1− Φ
(
η−1roijβ1 − 0.6(β2 + β3distj)

)
Φ
(
η−1roijβ1 − 0.6(β2 + β3distj)

) | Zij

 ,
Bu (Zij ;β, φ) = E

 Φ
(
η−1roijβ1 − 0.6(β2 + β3distj)

)
1− Φ

(
η−1roijβ1 − 0.6(β2 + β3distj)

) | Zij

 .
We are interested in the change of exporter numbers θ =

E[Nex
c2 ]

E[Nex] .

C Proofs for Section 3

C.1 Notation

For simplicity, let Bℓ be a subset of B such that Aℓ,b1 ̸= Aℓ,b2 for all b1 ̸= b2, b1, b2 ∈ Bℓ. If there
is Aℓ,b1 = Aℓ,b2 for b1, b2 ∈ B , keep only min{b1, b2} in Bℓ. Construct Bu in the same way. For
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instance, if

Aℓ =

 1 0

0 1

0 1

 , Au =

 1 0

1 1

0 1


then Bℓ = {1, 2} and Bu = {1, 2, 3}. Intuitively, Bℓ and Bu remove the redundant rows and is

(possibly an outer set of ) the support of b̂ℓ and b̂u.

For P ∈ P, let δP denote the true value of δ, λP,ℓ = AℓδP , λP,u = AuδP ,

θP,ℓ = min
b∈B

λP,ℓ,b, θP,u = max
b∈B

λP,u,b, θP,m =
θP,ℓ + θP,u

2
.

Let

Zδ ∼ N (0,Ω0) , Zℓ,b =
Aℓ,bZδ

σ0,ℓ,b
, Zu,b = −

Au,bZδ

σ0,u,b

denote the limiting distribution of

√
n
(
δ̂n − δPn

)
,

√
n
(
λ̂ℓ,b − λPn,ℓ,b

)
σ̂ℓ,b

,

√
n
(
λPn,u,b − λ̂u,b

)
σ̂u,b

with Ω0 and Pn specified in Lemma 3 and

σ0,ℓ,b =
√
Aℓ,bΩ0A′

ℓ,b, σ0,u,b =
√
Au,bΩ0A′

u,b.

For k = ℓ,m, u, , let

Tk = max

{
min
b∈B

Zℓ,b + λkℓ,b, min
b∈B

Zu,b + λku,b

}
(78)

be the asymptotic analog of T̂ (θPn,k), where (λkℓ, λku) are specified in Lemma 3. And let bkℓ,

bku be the asymptotic analog of b̂ℓ(θk) and b̂u(θk), with support Bkℓ, Bku:

bkℓ = min

{
argmin

b∈Bℓ

Zℓ,b + λkℓ,b

}
,

bku = min

{
argmin
b∈Bu

Zu,b + λku,b

}
,

Bkℓ = {b ∈ Bℓ : λkℓ,b <∞} ,

Bku = {b ∈ Bu : λku,b <∞} .

Define the asymptotic analog of (tℓ,1, tℓ,2, tu,1, tu,2) evaluated at θPn,k as

tkℓ,1(b) =


min
b̃∈B

(
1 + ρℓu(b, b̃)

)−1 (
Zu,b̃ + ρℓu(b, b̃)Zℓ,b + t†kℓ,1(b, b̃)

)
, if min

b̃∈B
ρℓu(b, b̃) > −1

−∞ elsewhere

(79)
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tku,1(b) =


min
b̃∈B

(
1 + ρℓu(b̃, b)

)−1 (
Zℓ,b̃ + ρℓu(b̃, b)Zu,b + t†ku,1(b, b̃)

)
, if min

b̃∈B
ρℓu(b̃, b) > −1

−∞ elsewhere

tkℓ,2(b) =


min

b̃∈B:ρℓ(b,b̃)<1

(
1− ρℓ(b, b̃)

)−1 (
Zℓ,b̃ − ρℓ(b, b̃)Zℓ,b + t†kℓ,2(b, b̃)

)
if min

b̃∈B
ρℓ(b, b̃) < 1

+∞ elsewhere

tku,2(b) =


min

b̃∈B:ρu(b̃,b)<1

(
1− ρu(b̃, b)

)−1 (
Zu,b̃ − ρu(b̃, b)Zu,b + t†ku,2(b, b̃)

)
if min

b̃∈B
ρu(b, b̃) < 1

+∞ elsewhere

where

t†kℓ,1(b, b̃) = λku,b̃ + ρℓu(b, b̃)λkℓ,b

t†ku,1(b, b̃) = λkℓ,b̃ + ρℓu(b̃, b)λku,b

t†kℓ,2(b, b̃) = λkℓ,b̃ − ρℓ(b, b̃)λkℓ,b

t†ku,2(b, b̃) = λku,b̃ − ρu(b̃, b)λku,b.

Note that if
∣∣∣λku,b̃∣∣∣ → ∞ and |λkℓ,b| → ∞, t†kℓ,1(b, b̃) may not be well defined. However, as we

will see later, this case is irrelevant for the proof. Same applies to t†ku,1, t
†
kℓ,2 and t†ku,2. And let

cck =

Φ−1 (αcΦ (tkℓ,1(bkℓ)) + (1− αc)Φ (tkℓ,2(bkℓ))) if Zℓ,bkℓ + λkℓ,bkℓ ≥ Zu,bku + λku,bku

Φ−1 (αcΦ (tku,1(bku)) + (1− αc)Φ (tku,2(bku))) if Zℓ,bkℓ + λkℓ,bkℓ < Zu,bku + λku,bku
(80)

be the asymptotic analog of ĉc(θk, α
c) . Let

p(c) = max {P (Tℓ > cmℓ (c) or {Tm > cmm(c) and Tu > cmu (c)}) , (81)

P (Tu > cmu (c) or {Tm > cmm(c) and Tℓ > cmℓ (c)})} ,

where

cmk (c) = max {cck, c} ,

and Tk, c
c
k are defined in (78), (80). Lastly, let

ct = inf
c
{c ≥ 0 : p(c) ≤ α− η} , (82)

be the asymptotic analog of ĉt defined (31).

I use Φ for the CDF of N (0, 1) and Φ2(x1, x2; ρ) for the CDF of N

([
0

0

]
,

[
1 ρ

ρ 1

])
.
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C.2 Proofs for Theorems and Propositions

Proof of Lemma 1.

Proof. Let b1 satisfy λℓ,b1 ≤ θ, and I show that

Φ
(
T̂ (θ)

)
− Φ (tℓ,1(θ, b1))

Φ (tℓ,2(θ, b1))− Φ (tℓ,1(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

} FOSD
⪯ Unif(0, 1). (83)

The proof mainly uses Theorem 5.2 and Lemma A.1 in Lee et al (2016), and below I follow

their notation. For s ∈ B, let

As =

(
1|B|×1

−1

)
, bs =

(
Zℓ

−Zu,s

)
.

It is easy to see that {
T̂ (θ) = Zℓ,b1

}
=
⋃
s∈B
{AsZℓ,b1 ≤ bs} . (84)

To simplify AsZℓ,b1 ≤ bs, note that for all b ∈ B,

Zℓ,b1 ≤ Zℓ,b

⇔ (1− ρℓ(b1, b))Zℓ,b1 ≤ Zℓ,b − ρℓ(b1, b)Zℓ,b1

⇔

Zℓ,b1 ≤ (1− ρℓ(b1, b))−1 (Zℓ,b − ρℓ(b1, b)Zℓ,b1) if ρℓ(b1, b) < 1

0 ≤ Zℓ,b −Zℓ,b1 if ρℓ(b1, b) = 1

and

Zℓ,b1 ≥ Zu,s

⇔ (1 + ρℓu(b1, s))Zℓ,b1 ≥ Zu,s + ρℓu(b1, s)Zℓ,b1

⇔

Zℓ,b1 ≥ (1 + ρℓu(b1, s))
−1 (Zu,s + ρℓu(b1, s)Zℓ,b1) if ρℓu(b1, s) > −1

0 ≥ Zu,s −Zℓ,b1 if ρℓu(b1, s) = −1

Therefore,

{AsZℓ,b1 ≤ bs} =
{
V−s ≤ Zℓ,b1 ≤ V+,V0 ≥ 0

}
(85)

where

V−s =

(1 + ρℓu(b1, s))
−1 (Zu,s + ρℓu(b1, s)Zℓ,b1) if ρℓu(b1, s) > −1

−∞ if ρℓu(b1, s) = −1

V+ =


min

b∈B:ρℓ(b1,b)<1
(1− ρℓ(b1, b))−1 (Zℓ,b − ρℓ(b1, b)Zℓ,b1) if {b ∈ B, ρℓ(b1, b) < 1} ≠ ∅

+∞ if {b ∈ B, ρℓ(b1, b) < 1} = ∅
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V0s =


min

b∈B:ρℓ(b1,b)=1
(Zℓ,b −Zℓ,b1) if ρℓu(b1, s) > −1 and max

b∈B
ρℓ(b1, b) = 1

min

{
min

b∈B:ρℓ(b1,b)=1
(Zℓ,b −Zℓ,b1) ,Zℓ,b1 −Zu,s

}
if ρℓu(b1, s) = −1 and max

b∈B
ρℓ(bℓ, b) = 1

1 elsewhere

Note that

Zℓ,b1 ⊥
{
V+,

{
V−s ,V0s

}
s∈B

}
by construction. We can easily verify that

[tℓ,1(θ, b1), tℓ,2(θ, b1)] =
⋃
s∈B

[
V−s ,V+

]
where tℓ,1(θ, b1) and tℓ,2(θ, b1) are defined in Lemma 1.

Let

µ = E [Zℓ,b1 ] =
λℓ,b1 − θ
σℓ,b1

≤ 0

and Fµ(x; t1, t2) denote CDF of a N (µ, 1) random variable truncated to [t1, t2], i.e.

Fµ(x; t1, t2) =
Φ(x− µ)− Φ(t1 − µ)
Φ(t2 − µ)− Φ(t1 − µ)

.

Then by Theorem 5.3 in Lee, Sun, Sun, and Taylor (2016),

Fµ (Zℓ,bℓ ; tℓ,1(θ, b1), tℓ,2(θ, b1))

∣∣∣∣∣⋃
s∈B
{AsZℓ,b1 ≤ bs} ∼ Unif(0, 1), (86)

and by Lemma A.1 in Lee et al. (2016), for all z ∈ R,

F0 (z; tℓ,1(θ, b1), tℓ,2(θ, b1)) ≤ Fµ (z; tℓ,1(θ, b1), tℓ,2(θ, b1)) . (87)

Therefore, we have

Φ
(
T̂ (θ)

)
− Φ (tℓ,1(θ, b1))

Φ (tℓ,2(θ, b1))− Φ (tℓ,1(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

}
∼F0 (Zℓ,b1 ; tℓ,1(θ, b1), tℓ,2(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

}
FOSD
⪯ Fµ (Zℓ,b1 ; tℓ,1(θ, b1), tℓ,2(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

}
∼Unif(0, 1)
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Proof of Proposition 1.

Proof. To simplify notation, let

Bℓ0 =
{
b ∈ Bℓ : λℓ,b ≤ θ, P

(
b = b̂ℓ

)
> 0
}
,

Bu0 =
{
b ∈ Bu : λu,b ≥ θ, P

(
b = b̂u

)
> 0
}
.

Let b1 ∈ Bℓ0, by Lemma 1, it holds that

P
(
T̂ (θ) > ĉc(θ, α)

∣∣∣T̂ (θ) = Zℓ,b1

)
=P

(
F0

(
T̂ (θ); tℓ,1(θ, b1), tℓ,2(θ, b1)

)
> F0 (ĉ

c(θ, α); tℓ,1(θ, b1), tℓ,2(θ, b1))
∣∣∣T̂ (θ) = Zℓ,b1

)
≤P

(
Fµ

(
T̂ (θ); tℓ,1(θ, b1), tℓ,2(θ, b1)

)
> 1− α

∣∣∣T̂ (θ) = Zℓ,b1

)
=P (Unif(0, 1) > 1− α) = α,

where the second line follows from F0(x; t1, t2) strictly increasing in x, the inequality follows

from (87) and by construction

F0 (ĉ
c(θ, α); tℓ,1(θ, b1), tℓ,2(θ, b1)) = 1− α,

and the last line follows from (86).

Let b2 ∈ Bu0. Similar argument gives

P
(
T̂ (θ) > ĉc(θ, α)

∣∣∣T̂ (θ) = Zu,b2

)
≤ α. (88)

Therefore, we have

P
(
T̂ (θ) > ĉc(θ, α)

∣∣∣Eℓ ∪ Eu

)
=
∑

b1∈Bℓ0

P
(
T̂ (θ) > ĉc(θ, α)

∣∣∣T̂ (θ) = Zℓ,b1

)
P
(
T̂ (θ) = Zℓ,b1

∣∣∣Eℓ ∪ Eu

)
+
∑

b2∈Bu0

P
(
T̂ (θ) > ĉc(θ, α)

∣∣∣T̂ (θ) = Zu,b2

)
P
(
T̂ (θ) = Zu,b2

∣∣∣Eℓ ∪ Eu

)

≤α

 ∑
b1∈Bℓ0

P
(
T̂ (θ) = Zℓ,b1

∣∣∣Eℓ ∪ Eu

)
+
∑

b2∈Bu0

P
(
T̂ (θ) = Zu,b2

∣∣∣Eℓ ∪ Eu

)
=α,

where the first equality follows from{
T̂ (θ) = Zℓ,b1

}
b1∈B1

,
{
T̂ (θ) = Zu,b2

}
b2∈B2

is a partition of Eℓ ∪ Eu under (23), and the inequality follows from (83) and (88).
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Proof of Theorem 1.

Proof. By Lemma 3, we only focus on the subsequence sn, and for simplicity, I write n for

subsequence sn.

Step 1. I show that for all c ∈ R+,

p̄
(
c, λPn , Σ̂n/n

)
p−→ p(c) (89)

where p̄
(
c, λPn , Σ̂n/n

)
is defined in (30) and p(c) is defined in (81). Note that by Assumption

4 and (110), Ω̂n
p−→ Ω0, thus there is τn = o(1) such that

Ω̂n = Ω0 + op(τn). (90)

Let

Σn =

{[
Aℓ

Au

]
Ω

[
Aℓ

Au

]′
: Ω ∈ S, ∥Ω− Ω0∥ ≤ τn

}
.

To show (89), note that for all ε > 0,

Pn

(∣∣∣p̄(c, λPn , Σ̂n/n
)
− p(c)

∣∣∣ > ε
)

≤Pn

(∣∣∣p̄(c, λPn , Σ̂n/n
)
− p(c)

∣∣∣ > ε, Ω̂n ∈ Ωn

)
+ Pn

(
Ω̂n ̸∈ Ωn

)
≤Pn

(
sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| > ε

)
+ o(1)

=1

[
sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| > ε

]
+ o(1),

where the first inequality follows from P (A) ≤ P (A∩B)+P (Bc), the second inequality follows

from (90), and the last line is by p̄ (c, λPn ,Σ/n) and p(c) are non-random. Thus it suffices to

show

sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| → 0.

To do so, there is a sequence Σn ∈ Σn such that

lim sup
n

sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| = lim sup
n
|p (c, λPn ,Σn/n)− p(c)|

and it suffices to show

lim sup
n

p̄ (c, λPn ,Σn/n) = p(c). (91)

First consider the case when
√
n (λPn,u,bu − λPn,ℓ,bℓ) ∈ R along λPn , note that

g(Tℓ, Tm, c
c
ℓ, c

c
m) = 1 [Tℓ > cm(ccℓ, c) or {Tm > cm(ccm, c) and Tu > cm(ccu, c)}]

is bounded and continuous on D with

P (Dc) = P (Tℓ = cm(ccℓ, c) or Tm = cm(ccm, c) or Tu = cm(ccu, c)) = 0,
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because (i) (Tℓ, Tm, Tu) is continuously distributed and (ii) Tℓ ⊥ ccℓ, Tm ⊥ ccm, Tu ⊥ ccu by

construction. Thus (91) follows from Lemma 4.

Second, when
√
n (λPn,u,bu − λPn,ℓ,bℓ)→∞ along λPn , let

p̃(c, λPn ,Σn/n) = max
{
P
(
T̂ (λPn,ℓ,bℓ) > ĉm(λPn,ℓ,bℓ , c;α

c);N (λPn ,Σn)
)
, (92)

P
(
T̂ (λPn,u,bu) > ĉm(λPn,u,bu , c;α

c);N (λPn ,Σn)
)}

and we have

0 ≤ p̄ (c, λPn ,Σn/n)− p̃ (c, λPn ,Σn/n) ≤ P
(
T̂ (θm) > ĉm(θm, c;α

c);N (λPn ,Σn)
)
= o(1)

where the last equality follows from Lemma 4. And

p̃(c, λPn ,Σn/n) =max
{
P
(
T̂ (θn,ℓ) > c̃m(θn,ℓ, c;α

c);N (λPn ,Σn)
)
,

P
(
T̂ (θn,u) > c̃m(θn,u, c;α

c);N (λPn ,Σn)
)}

→max {P (Tℓ > cmℓ (c)) , P (Tu > cmu (c))} (93)

=p(c)

(93) follows from continuous mapping theorem.

Step 2. I show that for all ε > 0,

lim sup
n

Pn

(
ĉtPn
≤ ct − ε

)
= 0

where ct is defined in (82) and ĉtPn
is defined in (112). Note that by definition

p̄
(
ĉtPn

, λPn , Σ̂n/n
)
≤ α− η

and p̄
(
c, λPn , Σ̂n/n

)
is decreasing in c. Thus

lim sup
n

Pn

(
ĉtPn
≤ ct − ε

)
= lim sup

n
Pn

(
p̄
(
ct − ε, λPn , Σ̂n/n

)
≥ α− η

)
= 0

where the last equation is by

p̄
(
ct − ε, λPn , Σ̂n/n

)
p−→ p

(
ct − ε

)
< α− η, (94)

and (94) follows from Step 1 (89).

Step 3. For all ε > 0, it holds that

lim sup
n→∞

max
{
Pn

(
T̂ (θℓ) > ĉm(θℓ, ĉ

t) ∨
{
T̂ (θm) > ĉm(θm, ĉ

t) ∧ T̂ (θu) > ĉm(θu, ĉ
t)
})

,

Pn

(
T̂ (θu) > ĉm(θu, ĉ

t) ∨
{
T̂ (θm) > ĉm(θm, ĉ

t) ∧ T̂ (θℓ) > ĉm(θℓ, ĉ
t)
})}

= lim sup
n→∞

max
{
Pn

(
T̂ (θℓ) > c̃m(θℓ, ĉ

t) ∨
{
T̂ (θm) > c̃m(θm, ĉ

t) ∧ T̂ (θu) > c̃m(θu, ĉ
t)
})

,
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Pn

(
T̂ (θu) > c̃m(θu, ĉ

t) ∨
{
T̂ (θm) > c̃m(θm, ĉ

t) ∧ T̂ (θℓ) > c̃m(θℓ, ĉ
t)
})}

≤ lim sup
n→∞

max
{
Pn

(
T̂ (θℓ) > c̃m(θℓ, c

t − ε) ∨
{
T̂ (θm) > c̃m(θm, c

t − ε) ∧ T̂ (θu) > c̃m(θu, c
t − ε)

})
,

Pn

(
T̂ (θu) > c̃m(θu, c

t − ε) ∨
{
T̂ (θm) > c̃m(θm, c

t − ε) ∧ T̂ (θℓ) > c̃m(θℓ, c
t − ε)

})}
+ lim sup

n→∞
Pn

(
ĉtPn
≤ ct − ε

)
=p(ct − ε). (95)

Here I omit the subcript Pn in θℓ, θm, θu and α in ĉm, c̃m for simplicity. Since (95) holds at all

ε > 0, we can take a sequence of ε→ 0, then by Lemma 9,

lim sup
n→∞

max
{
Pn

(
T̂ (θℓ) > ĉm(θℓ;α) ∨

{
T̂ (θm) > ĉm(θm;α) ∧ T̂ (θu) > ĉm(θu;α)

})
,

Pn

(
T̂ (θu) > ĉm(θu, α) ∨

{
T̂ (θm) > ĉm(θm;α) ∧ T̂ (θℓ) > ĉm(θℓ;α)

})}
≤ lim

ε→0
p(ct − ε) = p(ct).

By construction,

p(ct) ≤ α− η.

Thus by Lemma 3,

lim
n
Pn (θ ̸∈ CIm) ≤ α.

Proof of Theorem 2.

Proof. Part I. Symmetric Bounds. Since λℓ = λu and λ̂ℓ = λ̂u, I will omit the subscript ℓ, u in

this proof. Let

Zu,b = Zb =
λ̂b − θ
σ̂b/
√
n
, ∀b = 1, .., |B|,

Zℓ,b = −Zb.

And the test statistic is

T̂ (θ) = max

{
min
b∈B
{Zb} ,min

b∈B
{−Zb}

}
.

Step 1. By Lemma 8, there is α′
1 > α such that

lim inf
n

inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

1

2
)

)
= 1. (96)

By Lemma 11, there is α′
2 > α such that

lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n;α

′
2)
)
= 1.
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Let α′ = min {α′
1, α

′
2} > α, and then (37) follows from

lim inf
n

inf
P∈P

P
(
CIm

(
λ̂n, Σ̂n/n;α

)
⊆ CIsim

(
λ̂n, Σ̂n/n;α

′
))

= lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈ CIsim(λ̂n, Σ̂n;α

′)
)

≥ lim inf
n

inf
P∈P

P

(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n;α

′), ĉt ≤ Φ−1(1− α′

2
)

)
≥ lim inf

n
inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n;α

′)
)
+ lim inf

n
inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

2
)

)
− 1

≥ lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n;α

′
2)
)
+ lim inf

n
inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

1

2
)

)
− 1

=1

Step 2. I show (38) with θn = θℓ − κ√
n
. Note that by (37), there is α′ > α such that

lim inf
n

Pn

(
θn ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
− Pn

(
θn ̸∈ CIsim

(
λ̂n, Σ̂n/n;α

))
≥ lim inf

n
Pn

(
θn ̸∈ CIsim

(
λ̂n, Σ̂n/n;α

′
))
− Pn

(
θn ̸∈ CIsim

(
λ̂n, Σ̂n/n;α

))
= lim inf

n
Pn

(
T̂ (θn) > Φ−1(1− α′

2
)

)
− Pn

(
T̂ (θn) > Φ−1(1− α

2
)
)

≥ lim inf
n

Pn

(
T̂ (θn) ∈

(
Φ−1(1− α′

2
),Φ−1(1− α

2
)

))
Under Pn, we can show that there is a subsequence Pan such that (110), (111) hold and

T̂ (θn)
d−→ T ∗ := max

{
min
b∈B̄

{
Zb + λ̄b +

κ

σb

}
, min

b∈B̄

{
−Zb − λ̄b −

κ

σb

}}
.

And let

B̄ =
{
b ∈ B : λ̄b ∈ R

}
.

Note that we have λ̄bℓ = 0, thus B̄ ̸= ∅.
To simplify notation, let ε = 1

4

(
Φ−1(1− α

2 )− Φ−1(1− α′

2 )
)
, and c1 = Φ−1(1 − α′

2 ) + ε,

c2 = Φ−1(1− α
2 )− ε. We have

lim inf
n

Pn

(
T̂ (θn) ∈

(
Φ−1(1− α′

2
),Φ−1(1− α

2
)

))
≥ P (T ∗ ∈ (c1, c2)) .

Then I show that there is κ ∈ R such that

P (T ∗ ∈ (c1, c2)) > 0.

To do so, let b∗ be the element with largest variance, i.e. σb∗ ≥ maxb∈B̄ σb. Then

P (T ∗ ∈ (c1, c2))

≥P
(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1, Zb + λ̄b +

κ

σb
≥ c1, b ∈ B̄\{b∗}

)
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=P

(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1,Eb ≥ c1 − ρb∗bZb∗ − λ̄b −

κ

σb
, b ∈ B̄\{b∗}

)
≥P

(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1,Eb ≥ c1 − λ̄b −

a

σb
− |ρb∗b|(c1 − λ̄b∗ −

κ

σb∗
), b ∈ B̄\{b∗}

)
≥P

(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1,Eb ≥ c1 − λ̄b − |ρb∗b|

(
c1 − λ̄b∗

)
−
(
σb∗

σb
− |ρb∗b|

)
κ

σb∗
, b ∈ B̄\{b∗}

)
=P

(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1

)
P

(
Eb ≥ c1 − λ̄b − |ρb∗b|

(
c1 − λ̄b∗

)
−
(
σb∗

σb
− |ρb∗b|

)
κ

σb∗
, b ∈ B̄\{b∗}

)
where

Eb = Zb − ρ(b, b∗)Zb∗ .

There is κ ∈ R such that

P

(
Eb ≥ c̄− λ̄b − |ρb∗b|

(
c̄− λ̄b∗

)
−
(
σb∗

σb
− |ρb∗b|

)
a

σb∗
, b ∈ B̄\{b∗}

)
> 0

and therefore

P
(
T ∗ ∈

(
c̄,Φ−1(1− α

2
)
))

> 0.

Part II. Large Bounds. By Lemma 12, there is α′
1 such that

lim inf
n

inf
n
P

(
ĉt ≤ Φ−1(1− α′

1

2
)

)
= 1.

Let α′ = max {α′
1, 2α

c} and c1 = Φ−1(1− α′

2 ). I show that

lim inf
n

inf
n
P

(
θ ̸∈ CIm(λ̂, Σ̂n/n, α

′) for all θ > max
b∈B

λ̂u,b +
σ̂u,b√
n
c1

)
= 1.

And the proof for the lower bound is symmetric.

Let κ′n →∞ and κ′n ≪ κn. Lemma 2 suggests that

lim inf
n

inf
n
P

(
θ ̸∈ CIm(λ̂, Σ̂n/n, α

′) for all θ > max
b∈B

λ̂u,b +
σ̂u,b√
n
κ′n

)
= 1.

Then I simplify ĉc(θ, αc) for

θ ∈
(
max
b∈B

λ̂u,b +
σ̂u,b√
n
c1, max

b∈B
λ̂u,b +

σ̂u,b√
n
κ′n

]
.

In this case, under (36),

Zℓ,b̂ℓ
≤ Zℓ,bℓ =

λ̂ℓ,bℓ − θ
σ̂ℓ,bℓ/

√
n

≤
λ̂ℓ,bℓ − λ̂u,bu −

σ̂u,bu√
n
c1

σ̂ℓ,bℓ/
√
n

=
λ̂ℓ,bℓ − λ̂u,bu
σ̂ℓ,bℓ/

√
n
−
σ̂u,bu
σ̂ℓ,bℓ

c1 → −∞ (97)
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and

Zu,b̂u
=
θ − λ̂u,b̂u
σ̂u,b̂u

∈
(
c1, κ

′
n

]
. (98)

Thus, with probability approaching one,

T̂ (θ) = Zu,b̂u
> c1,

ĉc(θ, αc) = Φ−1
(
αcΦ

(
tu,1(θ, b̂u)

)
+ (1− αc)Φ

(
tu,2(θ, b̂u)

))
.

Moreover, (97) and (98) implies that

Φ
(
tu,1(θ, b̂u)

)
≤ Φ

((
1 + ρℓu(bℓ, b̂u)

)−1 (
Zℓ,bℓ + ρℓu(bℓ, b̂u)Zu,b̂u

))
= Φ

(
Zℓ,bℓ −Zu,b̂u

1 + ρℓu(bℓ, b̂u)
+ Zu,b̂u

)
p−→ 0.

Therefore,

ĉc(θ, αc) ≤ Φ−1
(
(1− αc)Φ

(
tu,2(θ, b̂u)

))
+ o(1) ≤ c1 w.p.a. 1,

where the last inequality follows from αc > α
2 . Thus by construction,

ĉh(θ, α) ≤ c1 < T̂ (θ),

and θ is rejected.

The proof for (38) is similar to Part I Step 2.

Proof of Theorem 3.

Proof. By Lemma 2, it is easy to see that

lim inf
n→∞

inf
P∈Pn

P
(
θℓ,n ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= 1 (99)

lim inf
n→∞

inf
P∈Pn

P
(
θu,n ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= 1.

Ye et al. (2023) confidence interval has form[
λ̂m,min −

√
n

m
Q∗
(
λ̂∗n,min − λ̂n,min, p̂

)
, θ̂m,max −

√
n

m
Q∗
(
λ̂∗n,max − λ̂n,max, 1− p̂

)]
,

where λ̂∗n,ℓ,b is calculated by empirical bootstrap, and λ̂m,b is calculate by a subsample of size

m, and

λ̂n,min = min
b∈B

λ̂n,ℓ,b, λ̂
∗
n,min = min

b∈B
λ̂∗n,ℓ,b,
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p̂
p−→ p∗ ∈

[
α
2 , α

]
. The upper bound is defined symmetrically. First consider the rejection of θℓ,n.

Note that

P
(
θℓ,n ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
=P

(
θℓ,n < λ̂m,min −

√
n

m
Q∗
(
λ̂∗n,min − λ̂n,min, p̂

))
+ P

(
θℓ,n > θ̂m,max −

√
n

m
Q∗
(
λ̂∗n,max − λ̂n,max, 1− p̂

))
=P

(
Q∗
(√

n
(
λ̂∗n,min − λ̂n,min

)
, p̂
)
<
√
m(λ̂m,min − θℓ,n)

)
(100)

+ P
(
Q∗
(√

n(λ̂∗n,max − λ̂n,max), 1− p̂
)
>
√
m(λ̂m,max − θℓ,n)

)
. (101)

As for (100), note that

√
m(λ̂m,min − θℓ,n) =

√
m(λ̂m,min − λℓ,bℓ) +

√
m(λℓ,bℓ − θℓ,n)

=
√
m(λ̂m,min − λℓ,bℓ) + κ′n

√
m√
n
a

=
√
m(λ̂m,min − λℓ,bℓ) + op(1)

d−→ min
b∈B

Zℓ,b + τℓ,b

where τℓ,b = limm
√
m (λm,b − λℓ,bℓ), and the limit distribution is continuous. Thus

(100) = P
(
Q∗
(√

n
(
λ̂∗n,min − λ̂n,min

)
, p̂
)
<
√
m(λ̂m,min − λℓ,bℓ)

)
+ o(1).

Similarly, if
√
m(λu,bu − θℓ,n) ∈ R, we have

(101) = P
(
Q∗
(√

n(λ̂∗n,max − λ̂n,max), 1− p̂
)
>
√
m(λ̂m,max − λℓ,bℓ)

)
+ o(1) (102)

with similar argument. And if
√
m(λu,bu − θℓ,n) → ∞, (102) still holds since both side of the

equation is o(1). In sum, we have

P
(
θℓ,n ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
= P

(
λℓ,bℓ ̸∈ CI

YKHS
(
λ̂n, Σ̂n/n;α

))
+ o(1),

thus by Theorem 2(d) in Ye et al. (2023), it holds that

lim sup
n

sup
P
P
(
θℓ,n ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
≤ α. (103)

(99) and (103) gives (39).
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C.3 Auxiliary Lemmas

Lemma 2. (
√
n Convergence Rate) Suppose Assumptions 1, 2, 3, 4, and 5 hold. For all ε > 0,

there is κ̄ ∈ R+ such that

lim inf
n

inf
P∈P

P

(
CIm ⊆

[
θℓ −

κ̄√
n
, θu +

κ̄√
n

])
> 1− ε.

Proof. It suffices to show that

lim inf
n

inf
P∈P

P

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄√
n
, θu +

κ̄√
n

])
> 1− ε.

Following similar argument in Lemma 3, there is subsequence Pan ∈ P such that

lim inf
n

inf
P∈P

P

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄√
n
, θu +

κ̄√
n

])
= lim

an
Pan

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄
√
an
, θu +

κ̄
√
an

])
and Σ(Pan)→ Σ0. In addition, note that

Pan

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄
√
an
, θu +

κ̄
√
an

])
≥Pan

(
T̂ (θ) > ĉm(θ;α) for all θ < θℓ −

κ̄
√
an

)
+ Pan

(
T̂ (θ) > ĉm(θ;α) for all θ > θu +

κ̄
√
an

)
− 1.

Therefore, it suffices to show that for all ε > 0, there is κ̄ ∈ R+ such that the following two

conditions hold

Pan

(
T̂ (θ) > ĉm(θ;α) for all θ < θℓ −

κ̄
√
an

)
≥ 1− ε

2
, (104)

Pan

(
T̂ (θ) > ĉm(θ;α) for all θ < θℓ −

κ̄
√
an

)
≥ 1− ε

2
. (105)

I will show (104), and the proof of (105) is symmetric. In the following proof, I use n for

subsequence an to simplify notation.

First, I show that for all ε > 0, there is κ̄1 such that

lim inf
n

Pn (An(κ̄1)) ≥ 1− ε

6
, (106)

where

An(κ̄1) =

{
T̂ (θ) = Zℓ,b̂ℓ

> Φ−1(1− α− η
2

), for all θ ≤ θℓ −
κ̄1√
n

}
.

To see this,

Pn (An(κ̄1))
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=Pn

(
Zℓ,b̂ℓ

≥ min
b∈B
Zu,b,Zℓ,b̂ℓ

> Φ−1(1− α− η
2

), for all θ ≤ θℓ −
κ̄1√
n

)
≥Pn

(
Zℓ,b̂ℓ

≥ Zu,bu ,Zℓ,b̂ℓ
> Φ−1(1− α− η

2
), for all θ ≤ θℓ −

κ̄1√
n

)
=Pn

(
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

+
λℓ,b̂ℓ − θℓ
σ̂ℓ,b̂ℓ/

√
n
+

θℓ − θ
σ̂ℓ,b̂ℓ/

√
n
≥ θ − θℓ
σ̂u,bu/

√
n
+

θℓ − θu
σ̂u,bu/

√
n
+
θu − λ̂u,bu
σ̂u,bu/

√
n
,

λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

+
λℓ,b̂ℓ − θℓ
σ̂ℓ,b̂ℓ/

√
n
+

θℓ − θ
σ̂ℓ,b̂ℓ/

√
n
> Φ−1(1− α− η

2
), for all θ ≤ θℓ −

κ̄1√
n

)

≥Pn

(
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

+
κ̄1
σ̂ℓ,b̂ℓ

≥ − κ̄1
σ̂u,bu

+
θu − λ̂u,bu
σ̂u,bu/

√
n
,
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

+
κ̄1
σ̂ℓ,b̂ℓ

> Φ−1(1− α− η
2

)

)

=Pn

κ̄1 ≥ ( 1

σ̂ℓ,b̂ℓ
+

1

σ̂u,bu

)−1(
θu − λ̂u,bu
σ̂u,bu/

√
n
−
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

)
, κ̄1 > σ̂ℓ,b̂ℓΦ

−1(1− α

2
)−
√
n
(
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ

)
The existence of κ̄1 follows from(

1

σ̂ℓ,b̂ℓ
+

1

σ̂u,bu

)−1(
θu − λ̂u,bu
σ̂u,bu/

√
n
−
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

)
= OP (1),

σ̂ℓ,b̂ℓΦ
−1(1− α− η

2
)−
√
n
(
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ

)
= OP (1).

Second, if minb∈B ρℓu(b̂ℓ, b) > −1, there is ξ ∈ (0, 1) such that ρ̂ℓu(b̂ℓ, bu) > ξ−1 with probablity

approaching one by Assumption 1, 2, 3, and 4. Then, for all ε > 0, there is M̄ ∈ R such that

lim inf
n

Pn (Bn) ≥ 1− ε

6
, (107)

where

Bn = B1n ∪B2n,

B1n =

{
min
b∈B

ρℓu(b̂ℓ, b) = −1
}
,

B2n =

{
min
b∈B

ρℓu(b̂ℓ, b) > −1,
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1 λu,bu − λ̂u,bu
σ̂u,bu/

√
n
≤ M̄

}

because

lim inf
n

Pn (B1n ∪B2n)

=1− lim inf
n

Pn

(
min
b∈B

ρℓu(b̂ℓ, b) > −1,
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1 λu,bu − λ̂u,bu
σ̂u,bu/

√
n

> M̄

)

≥1− lim inf
n

Pn

(
min
b∈B

ρℓu(b̂ℓ, b) > −1,
1

ξ

∣∣∣∣∣λu,bu − λ̂u,buσ̂u,bu/
√
n

∣∣∣∣∣ > M̄

)

≥1− lim inf
n

Pn

(
1

ξ

∣∣∣∣∣λu,bu − λ̂u,buσ̂u,b/
√
n

∣∣∣∣∣ > M̄

)
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and the existence of M̄ follows from

1

ξ

∣∣∣∣∣λu,bu − λ̂u,buσ̂u,bu/
√
n

∣∣∣∣∣ = OP (1).

And by similar argument in (106), there is κ̄2 such that

lim inf
n

Pn (Cn(κ̄2)) ≥ 1− ε

6
, (108)

where

Cn(κ̄2) =

{
T̂ (θ) > z̄ for all θ ≤ θℓ −

κ̄2√
n

}
,

where z̄ is defined in Lemma 5 with M̄ given above (107).

In sum, let κ̄ = max {κ̄1, κ̄2, 0},

Dn =

{
T̂ (θn) > ĉc(θn, 1− αc) for all θ ≤ θℓ −

κ̄√
n

}
,

we have

lim inf
n

Pn (Dn)

≥ lim inf
n

Pn (An(κ̄) ∩Bn ∩ Cn(κ̄) ∩Dn)

= lim inf
n

Pn (An(κ̄) ∩Bn ∩ Cn(κ̄))

≥ lim inf
n

Pn (An(κ̄)) + Pn (Bn) + Pn (Cn(κ̄))− 2

≥ lim inf
n

Pn (An(κ̄1)) + Pn (Bn) + Pn (Cn(κ̄2))− 2

≥1− ε

2
.

where the equality follows from Lemma 5: the three assumptions in Lemma 5 hold because (i)

κ̄ ≥ 0, (ii) An(κ̄), (iii) Bn ∩Cn(κ̄). The last inequality follows from (106), (107) and (108).

Lemma 3. Under Assumptions 1, 2, 3, 4, 5, to prove that

lim sup
n→∞

sup
P∈P

sup
θ∈[θP,ℓ,θP,u]

P
(
θ ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
≤ α,

it suffices to show that we have

lim sup
n→∞

max
{
Pn

(
T̂ (θPn,ℓ) > c̃m(θPn,ℓ, ĉ

t
Pn

;α) or T̂ (θPn,m) > c̃m(θPn,m, ĉ
t
Pn

;α)
)
,

Pn

(
T̂ (θPn,u) > c̃m(θPn,u, ĉ

t
Pn

;α) or T̂ (θPn,m) > c̃m(θPn,m, ĉ
t
Pn

;α)
)}
≤ α− η, (109)

for all sequence {Pn} ∈ P∞ = ×∞
n=1Pn with

1. The convergence of Ω,

Ω(Pn)→ Ω0 ∈ S. (110)
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2. The convergence of

(λn,kℓ, λn,ku) =

((
λPn,ℓ,b − θPn,k

σPn,ℓ,b/
√
n

)
b∈B

,

(
θPn,k − λPn,u,b

σPn,u,b/
√
n

)
b∈B

)
→ (λkℓ, λku), (111)

with λℓℓ ∈ Λ0, λuu ∈ Λ0, λℓ,u, λmu ∈ Λ− and λmℓ, λuℓ ∈ Λ−, σ0,ℓ,b =
√
Aℓ,bΩ0A′

ℓ,b,

σ0,u,b =
√
Au,bΩ0A′

u,b,

Λ0 =

{
λ ∈ [0,+∞]|B| : min

b∈B
λb = 0

}
Λ− =

{
λ ∈ [−∞,+∞]|B| : min

b∈B
λb ≤ 0

}
.

where

ĉtPn
= inf

c

{
c ≥ 0 : p̄

(
c, λPn , Σ̂n/n

)
+ η ≤ α

}
. (112)

Recall that c̃h(θ, c;α) is defined in (27) and p̄
(
c, λPn , Σ̂n/n

)
is defined in (30).

Proof. There is alwasy a subsequence {na}, {Pna , θna} such that

lim sup
n→∞

sup
P∈P

sup
θ∈[θP,ℓ,θP,u]

P
(
θ ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= lim

na

Pna

(
θna ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
.

(113)

Since S defined in Assumption 3 is compact (e.g. in the Frobenius norm), and Assumption 3

implies that Ω(Pna) ∈ S for all na, there exists a further subsequence {nr} ⊆ {na} such that

lim
r→∞

Ω (Pnr)→ Ω0 ∈ S.

Also, note that the set [−∞,+∞]|B| is compact under metric d(λ, λ̃) =
∥∥∥Φ(λ)− Φ(λ̃)

∥∥∥ for Φ(·)
the standard normal cdf applied elementwise, and ∥·∥ the Euclidean norm. Therefore, there is

a further subsequence {ns} ⊆ {nr} along which (111) holds. We have found a subsequence ns

such that (110) and (111) hold. And, by (113), we have

lim sup
n→∞

sup
P∈P

sup
θ∈[θℓ,θu]

P
(
θ ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= lim

ns

Pns

(
θns ̸∈ CIm

(
λ̂ns , Σ̂ns/ns;α

))
.

With slight abuse of notation, in the following equations I use n for subsequence ns to simplify

notation:

Pns

(
θns ̸∈ CIm

(
λ̂ns , Σ̂ns/ns;α

))
≤Pn

(
θn ̸∈ CIm

(
λ̂n, Σ̂n/n;α

)
, λPn ∈ Λ̂n

)
+ Pn

(
λPn ̸∈ Λ̂n

)
≤max

{
Pn

(
[θPn,ℓ, θPn,m] ̸⊆ CIm

(
λ̂n, Σ̂n/n;α

)
, λPn ∈ Λ̂n

)
,

Pn

(
[θPn,m, θPn,u] ̸⊆ CIm

(
λ̂n, Σ̂n/n;α

)
, λPn ∈ Λ̂n

)}
+ Pns

(
λPn ̸∈ Λ̂n

)
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≤max
{
Pn

(
T̂ (θPn,ℓ) > ĉm(θPn,ℓ;α) or T̂ (θPn,m) > ĉm(θPn,m;α), λPn ∈ Λ̂n

)
,

Pn

(
T̂ (θPn,m) > ĉm(θPn,m;α) or T̂ (θPn,u) > ĉm(θPn,u;α), λPn ∈ Λ̂n

)}
+ η + o(1)

≤max
{
Pn

(
T̂ (θPn,ℓ) > c̃m(θPn,ℓ, ĉ

t
Pn

;α) or T̂ (θPn,m) > c̃m(θPn,m, ĉ
t
Pn

;α)
)
,

Pns

(
T̂ (θPn,m) > c̃m(θPn,m, ĉ

t
Pn

;α) or T̂ (θPn,u) > c̃m(θPn,u, ĉ
t
Pn

;α)
)}

+ η + o(1).

Recall that ĉt is defined in (31) and ĉtPn
is defined in (112), thus the last inequality follows from

the fact that ĉtPn
≤ ĉt if λPn ∈ Λ̂n. Therefore it suffices to show (109).

Lemma 4. Under Assumptions 1, 2, 3, 4, 5, under sequences (110) and (111), if

min
b∈B

σ0,u,bλℓu,b ∈ R, (114)

it holds that (
T̂ (θPn,k), ĉ

c(θPn,k, α
c)
)
k=ℓ,m,u

d−→ (Tk, c
c
k)k=ℓ,m,u . (115)

If

min
b∈B

σ0,u,bλℓu,b = −∞, (116)

it holds that (
T̂ (θPn,k), ĉ

c(θPn,k, α
c)
)
k=ℓ,u

d−→ (Tk, c
c
k)k=ℓ,u , (117)

and for all c ∈ R
Pn

(
T̂ (θPn,m) ≥ c

)
→ 0. (118)

Proof. Note that

lim
n

√
n (λPn,ℓ,bℓ − λPn,u,bu) = lim

n
σPn,u,b

λPn,ℓ,bℓ −maxb∈B λPn,u,b

σPn,u,b/
√
n

= lim
n

min
b∈B

σPn,u,b
θPn,ℓ − λPn,u,b

σPn,u,b/
√
n

= min
b∈B

lim
n
σPn,u,b

θPn,ℓ − λPn,u,b

σPn,u,b/
√
n

= min
b∈B

σ0,u,bλℓu,b. (119)

Thus the two cases in (114) and (116) correspond to whether the length of the identified set of

θ is large asymptotically. I will show (115) under (114 in Step 1 and 2, then show (117) and

(118) under (116) in Step 3.

Step 1. Show that under (114),(
b̂ℓ(θPn,k), b̂u(θPn,k), T̂ (θPn,k),Φ

(
t̂ℓ(θPn,k,Bkℓ)

)
,Φ
(
t̂u(θPn,k,Bku)

))
k=ℓ,m,u

d−→ (bkℓ, bku, Tk,Φ (tkℓ(Bkℓ)) ,Φ (tku(Bku)))k=ℓ,m,u .
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where

tkℓ(Bkℓ) = (tkℓ,1(b), tkℓ,2(b))b∈Bkℓ
,

tku(Bku) = (tku,1(b), tku,2(b))b∈Bku
.

Step 1.1. Note that

T̂ (θPn,k) =max

{
min
b∈B

λ̂ℓ,b − θPn,k

σ̂ℓ,b/
√
n

, min
b∈B

θPn,k − λ̂u,b
σ̂u,b/

√
n

}

=max

{
min
b∈Bℓ

λ̂ℓ,b − λPn,ℓ,b

σ̂ℓ,b/
√
n

+
σPn,ℓ,b

σ̂ℓ,b
λn,kℓ,b, min

b∈Bu

λPn,u,b − λ̂u,b
σ̂Pn,u,b/

√
n

+
σPn,u,b

σ̂u,b
λn,ku,b

}

=max

{
min
b∈Bkℓ

λ̂ℓ,b − λPn,ℓ,b

σ̂ℓ,b/
√
n

+
σPn,ℓ,b

σ̂ℓ,b
λn,kℓ,b, min

b∈Bku

λPn,u,b − λ̂u,b
σ̂u,b/

√
n

+
σPn,u,b

σ̂u,b
λn,ku,b

}
w.p.a. 1

d−→max

{
min
b∈Bkℓ

Zℓ,b + λkℓ,b, min
b∈Bku

Zu,b + λku,b

}
. (120)

The first line is by definition, the second line simply rearranges terms with λn,kℓ,b, λn,ku,b defined

in (111) and Bℓ, Bu defined in Section C.1 first paragraph. To see the third line, note that by

Assumption 1, 2, 3, 4, we have((
λ̂ℓ,b − λPn,ℓ,b

σ̂ℓ,b/
√
n

)
b∈B

,

(
λPn,u,b − λ̂u,b
σ̂u,b/

√
n

)
b∈B

,

(
σPn,ℓ,b

σ̂ℓ,b

)
b∈B

,

(
σPn,u,b

σ̂u,b

)
b∈B

)
(121)

d−→
(
Zℓ, Zu,12|B|

)
.

And by definition, for b ∈ Bℓ\Bkℓ, λkℓ,b =∞, thus with probability going to one,

min
b̃∈B

λ̂ℓ,b̃ − θPn,k

σ̂ℓ,b̃/
√
n
≤
λ̂ℓ,bℓ − θPn,k

σ̂ℓ,bℓ/
√
n
≤
λ̂ℓ,bℓ − λPn.ℓ,bℓ

σ̂ℓ,bℓ/
√
n

<
λ̂ℓ,b − λPn.ℓ,b

σ̂ℓ,b/
√
n

+
σPn,ℓ,b

σ̂ℓ,b
λn,kℓ,b.

Thus asymptotically, we can ignore Bℓ\Bkℓ. With the same argument, we can replace Bu with

Bku in the second part. The fourth line follows from (i) (121), (ii) Slustsky’s Lemma and (iii)

the limit distribution is well defined because

λkℓ,b = lim
n

λPn,ℓ,b − θPn,k

σPn,ℓ,b/
√
n
≥ lim

n

λPn,ℓ,bℓ − λPn,u,bu

σPn,ℓ,b/
√
n

=
minb∈B σ0,u,bλℓu,b

σ0,ℓ,b
∈ R, (122)

λku,b = lim
n

θPn,k − λPn,u,b

σPn,u,b/
√
n
≥ lim

n

λPn,ℓ,bℓ − λPn,u,bu

σPn,u,b/
√
n

=
minb∈B σ0,u,bλℓu,b

σ0,u,b
∈ R.

Step 1.2. As for Φ
(
t̂ℓ,1(θk,Bkℓ)

)
, let b ∈ Bkℓ. If min

b̃∈B
ρℓu(b, b̃) = −1, then Φ (tkℓ,1(b)) = 0 by

construction in (79). And note that min
b∈B

ρℓu(b, b̃) = −1 implies Aℓ,b = −aAu,b̃ for some a > 0,

thus min
b∈B

ρ̂ℓu(b, b̃) = −1 for all samples, thus with probability one, Φ
(
t̂ℓ,1(θk, b

)
= 0, and the
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convergence is trivial. Then consider min
b̃∈B

ρℓu(b, b̃) > −1, where

Φ (tℓ,1(θk, b)) = min
b̃∈B

Φ

((
1 + ρ̂ℓu(b, b̃)

)−1
(
Ẑu,b̃ +

σu,b̃
σ̂u,b̃

λPn,ku,b̃
+ λkℓρ̂ℓu(b, b̃)

(
Ẑℓ,b +

σℓ,b
σ̂ℓ,b

λPn,kℓ,b

)))

By (122) and the definition of Bkℓ, we have λkℓ,b ∈ R, and thus

Φ (tℓ,1(θk, b))

=min
b̃∈B

Φ

((
1 + ρ̂ℓu(b, b̃)

)−1
(
Ẑu,b̃ +

σu,b̃
σ̂u,b̃

λPn,ku,b̃
+ ρ̂ℓu(b, b̃)

(
Ẑℓ,b +

σℓ,b
σ̂ℓ,b

λPn,kℓ,b

)))
d−→min

b̃∈B
Φ

((
1 + ρℓu(b, b̃)

)−1 (
Zu,b̃ + λku,b̃ + ρℓu(b, b̃) (Zℓ,b + λkℓ,b)

))
= Φ(tkℓ,1(b)) .

Thus

Φ (tℓ,1(θk,Bkℓ))
d−→ Φ (tkℓ,1(Bkℓ)) . (123)

This argument also applies to Φ (tℓ,2(θk,Bkℓ)), Φ (tu,1(θk,Bku)), Φ (tu,2(θk,Bku)).
Step 1.3. Let

g (X,Y ) = 1 [X ≤ Y ] .

For b1, b2 ∈ Bkℓ, b1 ̸= b2,

P (Zℓ,b1 + λkℓ,b1 = Zℓ,b2 + λkℓ,b2) = P ((Aℓ,b1 −Aℓ,b2)Zδ = λkℓ,b2 − λkℓ,b1) = 0,

following from Aℓ,b1 ̸= Aℓ,b2 , Zδ ∼ N (0,Ω0), Ω0 non-singular and λkℓ,b2 , λkℓ,b1 ∈ R. Thus

g (Zℓ,b1 + λkℓ,b1 , Zℓ,b2 + λkℓ,b2)

is almost sure continuous, and thus by continuous mapping theorem, it holds that

g (Zℓ,b1 ,Zℓ,b2)
d−→ g (Zℓ,b1 + λkℓ,b1 , Zℓ,b2 + λkℓ,b2) . (124)

Similarly, we have

g (Zu,b2 ,Zℓ,b1)
d−→ g (Zu,b2 + λku,b2 , Zℓ,b1 + λkℓ,b1) . (125)

Then consider b1 ∈ Bkℓ and b2 ∈ Bku. (i) if Aℓ,b1 ̸= Au,b2 , similar argument holds, and we have

g (Zℓ,b1 ,Zu,b2)
d−→ g (Zℓ,b1 + λkℓ,b1 , Zu,b2 + λku,b2) . (126)

(ii) if Aℓ,b1 = Au,b2 , then

g (Zℓ,b1 ,Zu,b2) = g (Zℓ,b1 + λkℓ,b1 , Zu,b2 + λku,b2) = 1

for all samples, thus the convergence holds trivially. The convergence in (120), (123), (124),
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(125), (126) holds jointly.

Step 2. Then I show the convergence of Φ (ĉc(θk, α)). Note that Φ (ĉc(θk, α)) can be written

as

Φ (ĉc(θk, α))

=
(
(1− α)Φ

(
tℓ,2(θk, b̂ℓ)

)
+ αΦ

(
tℓ,1(θk, b̂ℓ)

))
1
[
Zℓ,b̂ℓ

≥ Zu,b̂u

]
+
(
(1− α)Φ

(
tu,2(θk, b̂ℓ)

)
+ αΦ

(
tu,1(θk, b̂ℓ)

))
1
[
Zℓ,b̂ℓ

< Zu,b̂u

]
=
∑

b1∈Bkℓ

∑
b2∈Bku

1
[
Zℓ,b1 ≥ Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
×

((1− α)Φ (tu,2(θk, b1)) + αΦ (tℓ,1(θk, b2)))

+
∑

b1∈Bkℓ

∑
b2∈Bku

1
[
Zℓ,b1 < Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
×

((1− α)Φ (tu,2(θk, b1)) + αΦ (tu,1(θk, b2))) w.p.a. 1

And

1
[
Zℓ,b1 ≥ Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
=g (Zu,b2 ,Zℓ,b1)

∏
b̃1∈Bkℓ\b1

g
(
Zℓ,b1 ,Zℓ,b̃1

) ∏
b̃2∈Bkℓ\b2

g
(
Zℓ,b2 ,Zℓ,b̃2

)

1
[
Zℓ,b1 < Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
= [1− g (Zu,b2 ,Zℓ,b1)]

∏
b̃1∈Bkℓ\b1

g
(
Zℓ,b1 ,Zℓ,b̃1

) ∏
b̃2∈Bkℓ\b2

g
(
Zℓ,b2 ,Zℓ,b̃2

)

Since all function are almost sure continuous as discussed before, we have

Φ (ĉc(θk, α))
d−→ Φ (cck(α))

following from (123), (124), (125), (126).

Step 3. Now assume (116) holds. We can show that(
b̂ℓ(θPn,k), b̂u(θPn,k), T̂ (θPn,k),Φ

(
t̂ℓ(θPn,k,Bkℓ)

)
,Φ
(
t̂u(θPn,k,Bku)

))
k=ℓ,u

d−→ (bkℓ, bku, Tk,Φ (tkℓ(Bkℓ)) ,Φ (tku(Bku)))k=ℓ,u

with similar argument as Step 1 and 2. Regarding (118), note that

T̂ (θm) = max

{
min
b∈B

λ̂ℓ,b − θm
σ̂ℓ,b/
√
n
, min

b∈B

θm − λ̂u,b
σ̂u,b/

√
n

}

≤ max

{
λ̂ℓ,bℓ − θm
σ̂ℓ,bℓ/

√
n
,
θm − λ̂u,bu
σ̂u,bu/

√
n

}
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= max

{
λ̂ℓ,bℓ − λℓ,bℓ
σ̂ℓ,bℓ/

√
n

+
σℓ,bℓ
σ̂ℓ,bℓ

λℓ,bℓ − θm
σℓ,bℓ/

√
n
,
λu,bu − λ̂u,bu
σ̂u,b/

√
n

+
σu,bu
σ̂u,bu

θm − λu,b
σu,bu/

√
n

}

By (116), (119) and θm = (θℓ + θu)/2,

lim
n

λℓ,bℓ − θm
σℓ,bℓ/

√
n

= −∞, lim
n

θm − λu,b
σu,bu/

√
n

= −∞.

Thus it is easy to see (118) holds.

Lemma 5. Assume that (i) θ ≤ θℓ; (ii)

T̂ (θ) = Zℓ,b̂ℓ
> Φ−1(1− α− η

2
); (127)

(iii) either

min
b̃∈B

ρ̂ℓu(b̂ℓ, b̃) = −1,

or

(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1 λu,bu − λ̂u,bu
σ̂u,bu/

√
n
≤ M̄, (128)

T̂ (θ) > z̄, (129)

where M̄ ∈ R, z̄ is defined in Lemma 6 with M̄ given in (128). Then

T̂ (θ) > ĉm(θ, 1− αc). (130)

Proof. Note that ct ≤ Φ−1(1− α−η
2 ) by construction, thus under (127), T̂ (θ) > ct and (130) is

equivalent to

T̂ (θ) > ĉc(θ, 1− αc). (131)

If minb̃∈B ρ̂ℓu(b̂ℓ, b̃) = −1, then

ĉc(θ, 1− αc) = Φ−1
(
(1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

))
≤ Φ−1 (1− αc) < Φ−1(1− α

2
).

In this case, (131) holds trivially. If minb̃∈B ρℓu(b̂ℓ, b̃) > −1, we have

tℓ,1(θ, b̂ℓ) = min
b̃∈B

(
1 + ρ̂ℓu(b̂ℓ, b̃)

)−1 (
Zu,b̃ + ρ̂ℓu(b̂ℓ, b̃)Zℓ,b̂ℓ

)
≤
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1
(
θ − λ̂u,bu
σ̂u,bu/

√
n
+ ρ̂ℓu(b̂ℓ, bu)Zℓ,b̂ℓ

)

≤
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1
(
λu,bu − λ̂u,bu
σ̂u,bu/

√
n

+ ρ̂ℓu(b̂ℓ, bu)Zℓ,b̂ℓ

)
≤ M̄ +

1

2
Zℓ,b̂ℓ

,
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where the second inequality uses θ ≤ θℓ ≤ λu,bu by (i). Then

Φ
(
T̂ (θ)

)
− Φ (ĉc(θ, 1− αc))

=Φ
(
T̂ (θ)

)
− αcΦ

(
tℓ,1(θ, b̂ℓ)

)
− (1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

)
≥Φ

(
Zℓ,b̂ℓ

)
− αcΦ

(
M̄ +

1

2
Zℓ,b̂ℓ

)
− (1− αc)

=H
(
Zℓ,b̂ℓ

, M̄
)
> 0,

where H(z, M̄) is defined in Lemma 6. H(Zℓ,b̂ℓ
, M̄) > 0 follows from (129) and Lemma 6.

Lemma 6. Let

H(z, M̄) = Φ(z)− αcΦ

(
M̄ +

1

2
z

)
− (1− αc).

For all M̄ ∈ R, there is some z̄ ∈ R such that H(z) > 0 for all z ≥ z̄.

Proof. Note that

H ′(z) = ϕ(z)

(
1− α

2
exp

(
3

8
z2 − M̄

2
z − M̄2

2

))
,

and thus there is z̄ ∈ R such that H ′(z) < 0 for all z ≥ z̄. Also note that

lim
z→∞

H(z) = 0.

Therefore, for all z ≥ z̄, we have H(z) > 0.

Lemma 7. Let α ∈ (0, 12), α
c ∈ (α2 , α), η ∈

[
0, α4

)
. Recall that csim = Φ−1(1− α

2 ). Let

H (c,∆, ρ) = Φ2 (−c,∆− c; ρ) + Φ

(
−∆

2
− c
)
,

ρ∗2(α, η) = sup
ρ

{
ρ : sup

∆≥0
H
(
csim,∆, ρ

)
≤ α− η

}
. (132)

For all ξ > 0, there is c̄ < csim such that

sup
ρ≤ρ∗2(α,η)−ξ

sup
∆≥0

H (c̄,∆, ρ) < α− η. (133)

Proof. First note that we can check numerically that for α ∈ (0, 12),

sup
∆≥0

H
(
csim,∆, 0

)
= sup

∆≥0

α

2
Φ
(
∆− csim

)
+Φ

(
−∆

2
− csim

)
<

3

4
α < α− η

and thus ρ∗2(α, η) is well defined. And

sup
∆≥0

H
(
csim,∆, 1

)
= 2Φ (−c) = α > α− η,

thus ρ∗2(α, η) < 1.
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Second, I show that for all c ∈ (0, csim], it holds that for all |ρ| < 1,

sup
∆≥0

H (c,∆, ρ) = sup
∆∈[0,∆̄]

H (c,∆, ρ) (134)

where ∆̄ = 2csim +
√
4(csim)2 + 8/3 log(2). The first order derivative gives that for all ∆ > ∆̄,

dH (c,∆, ρ)

d∆
= ϕ(∆− c)

[
Φ

(
(ρ− 1)c− ρ∆√

1− ρ2

)
− 1

2
exp

(
3

8
∆(∆− 4c)

)]

≤ ϕ(∆− c)
[
1− 1

2
exp

(
3

8
∆(∆− 4csim)

)]
≤ 0

Therefore, (134) holds for all c ∈ (0, csim].

Third, let ρ̄ = ρ∗2(α, η)− ξ, and by construction,

α− η ≥ sup
∆∈[0,∆̄]

H
(
csim,∆, ρ∗2(α, η)

)
= sup

∆∈[0,∆̄]

H
(
csim,∆, ρ̄

)
+

dH
(
csim,∆, ρ̃(∆)

)
dρ

ξ

≥ sup
∆∈[0,∆̄]

H
(
csim,∆, ρ̄

)
+ aξ (135)

where

a = inf
∆ ∈ [0, ∆̄]

ρ̃ ∈ [ρ̄, ρ∗2(α, η)]

dH
(
csim,∆, ρ̃

)
dρ

= inf
∆ ∈ [0, ∆̄]

ρ̃ ∈ [ρ̄, ρ∗2(α, η)]

ϕ
(
−csim,∆− csim; ρ̃

)
> 0.

Rewrite (135) we get

sup
∆∈[0,∆̄]

H
(
csim,∆, ρ̄

)
≤ α− η − aξ.

Lastly,

dH (c,∆, ρ)

dc
= −ϕ(∆− c)Φ

(
(ρ− 1)√
1− ρ2

c− ∆ρ√
1− ρ2

)
−ϕ(−c)Φ

(
cρ− c+∆√

1− ρ2

)
−ϕ

(
−∆

2
− c
)
.

Let

b = − inf
ρ∈[0,ρ∗2(α,η)],c∈[0,csim],∆∈[0,∆̄]

dH (c,∆, ρ)

dc
> 0.

Choose c̄ = csim − aξ
2b , and then for all ρ ≤ ρ∗2(α, η)− ξ,

sup
∆∈[0,∆̄]

H
(
csim,∆, ρ

)
= sup

∆∈[0,∆̄]

H (c̄,∆, ρ) +
dH (c̃(∆),∆, ρ)

dc
(csim − c̄)

≥ sup
∆∈[0,∆̄]

H (c̄,∆, ρ)− b(csim − c̄). (136)
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In sum, for all ρ ≤ ρ∗2(α, η)− ξ, by (134), (135), (136),

sup
∆≥0

H (c̄,∆, ρ) = sup
∆∈[0,∆̄]

H (c̄,∆, ρ) ≤ α− η − aξ + b
aξ

2b
< α− η.

Lemma 8. Suppose Assumptions 1, 2, 3, 4, and 5 hold. Let α ∈ (0, 12), α
c ∈ (α2 , α), η ∈[

0, α−αc

2

)
. Assume that Aℓ = Au, and P satisfies that

sup
P∈P

ρℓ(bℓ, bu) < ρ∗2(α, η), (137)

where ρ∗2(α, η) is defined in Lemma 7 equation (132). Then there is α′ > α such that

lim inf
n

inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

2
)

)
= 1. (138)

Proof. Let

ξ =
1

2

(
ρ∗2(α, η)− sup

P∈P
ρℓ(bℓ, bu)

)
> 0,

and it is easy to see that η < α−αc

2 < α
4 . Therefore, by Lemma 7, there is c̄ < Φ−1(1− α

2 ) such

that (133) holds. To show (138), note that

lim inf
n

inf
P∈P

P
(
ĉt ≤ c̄

)
≥ lim inf

n
inf
P∈P

P

(
sup
λ∈Λ̂

p̄(c̄, λ) ≤ α− η

)

≥ lim inf
n

inf
P∈P

P

(
sup
λ∈Λ

p̄(c̄, λ) ≤ α− η
)

Recall that

p̄(c̄, λ) =max
{
P s
(
T̂ (θℓ) > c̃m(θℓ, c̄) ∨

{
T̂ (θm) > c̃m(θm, c̄) ∧ T̂ (θu) > c̃m(θu, c̄)

}
; (λ, Σ̂)

)
P s
(
T̂ (θu) > c̃m(θu, c̄) ∨

{
T̂ (θm) > c̃m(θm, c̄) ∧ T̂ (θℓ) > c̃m(θℓ, c̄)

}
; (λ, Σ̂)

)}
≤max

{
P s
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄; (λ, Σ̂)

)
, P s

(
T̂ (θm) > c̄ or T̂ (θu) > c̄; (λ, Σ̂)

)}
.

I will show that

sup
λ∈Λ

P s
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄; (λ, Σ̂)

)
≤ α− η w.p.a. 1,

and similarly we can show that

sup
λ∈Λ

P s
(
T̂ (θm) > c̄ or T̂ (θu) > c̄; (λ, Σ̂)

)
≤ α− η w.p.a. 1.

To see this,

P s
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄; (λ, Σ̂)

)
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=P s

(
max

{
min
b∈B

λ̂sb − θℓ
σ̂b/
√
n
, min

b∈B

θℓ − λ̂sb
σ̂b/
√
n

}
> c̄ or max

{
min
b∈B

λ̂sb − θm
σ̂b/
√
n
, min

b∈B

θm − λ̂sb
σ̂b/
√
n

}
> c̄; (λ, Σ̂)

)

≤P s

(
max

{
min
b∈B

λ̂sb − θℓ
σ̂b/
√
n
, min

b∈B

θm − λ̂sb
σ̂b/
√
n

}
> c̄; (λ, Σ̂)

)

≤P s

(
min

{
λ̂sbℓ − θℓ
σ̂bℓ/
√
n
,
λ̂sbu − θℓ
σ̂bu/
√
n

}
> c̄, or

θm − λ̂sbu
σ̂bu/
√
n
> c̄; (λ, Σ̂)

)

=P s

(
min

{
Zs
bℓ
,Zs

bu +
θu − θℓ
σ̂bu/
√
n

}
> c̄, or

θm − θu
σ̂bu/
√
n
− Zs

bu > c̄; (λ, Σ̂)

)
≤P s

(
Zs
bℓ
> c̄, Zs

bu +
θu − θℓ
σ̂bu/
√
n
> c̄; (λ, Σ̂)

)
+ P

(
θm − θu
σ̂bu/
√
n
− Zs

bu > c̄

)
=Φ

(
−c̄, θu − θℓ

σ̂bu/
√
n
− c̄; ρ̂ℓu(bℓ, bu)

)
+Φ

(
θm − θu
σ̂bu/
√
n
− c̄
)

≤Φ (−c̄,∆− c̄; ρ̂ℓu(bℓ, bu)) + Φ

(
−∆

2
− c̄
)

=H (c̄,∆, ρ̂ℓ(bℓ, bu)) (139)

where ∆ = θu−θℓ
σ̂bu/

√
n
≥ 0,

H (c̄,∆, ρ) = Φ (−c̄,∆− c̄; ρ) + Φ

(
−∆

2
− c̄
)
.

Under (137) and Assumptions 1, 2, 3, 4, and 5, it holds that

ρ̂ℓ(bℓ, bu) ≤ ρ∗2(α, η)− ξ w.p.a. 1.

Thus (139) gives w.p.a. 1,

P
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄; (λ, Σ̂)

)
≤ H (c̄,∆, ρ̂ℓ(bℓ, bu))

≤ sup
ρ≤ρ∗2(α,η)−ξ

sup
∆≥0

H (c̄,∆, ρ) < α− η

where the last inequality follows from the construction of c̄.

Lemma 9. p(c) is continuous at c ≥ 0.

Proof. For ε > 0, let

pk(c, ε) :=P (cmk (c) ≥ Tk > cmk (c− ε)) ≤ P (c− ε < Tk ≤ c) .

Then

lim
ε→0

pk(c, ε) = 0

for all c ≥ 0 since (i) under (114) and k = ℓ,m, u, or under (116) and k = ℓ, u, Tk is continuously

distributed, (ii) under (116) and k = m,

P (c− ε < Tk ≤ c) ≤ P (c− ε < Tk) = 0.
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But then

p(c− ε)− p(c)

≤max
{
P
(
Tℓ > chℓ (c− ε) or Tm > chm(c− ε)

)
− P

(
Tℓ > chℓ (c) or Tm > chm(c)

)
,

P
(
Tm > chm(c− ε) or Tu > chu(c− ε)

)
− P

(
Tm > chm(c) or Tu > chu(c)

)}
≤max {pℓ(c, ε) + pm(c, ε), pu(c, ε) + pm(c, ε)}

ε → 0−−−→→ 0

Thus p(c) is continous at c ≥ 0.

Lemma 10. Let

H(ρ, αc) = (1− αc)Φ ((1 + ρ)Ξ) + αcΦ ((ρ− 1)Ξ) ,

where

Ξ =

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
.

It holds that

1. for all α ∈ (0, 12), α
c ∈ (α2 , α), there is unique solution ρ∗(αc, α) ∈ (0, 1) such that

H (ρ∗(αc, α), αc) = 1− α

2
. (140)

2. Let ξ > 0. For all ρ ∈ [0, ρ∗(αc, α)− ξ], there is ε > 0 such that

H (ρ, αc) ≤ 1− α

2
− ε.

Proof. Straightforward calculation gives that for all ρ ∈ (0, 1),

dH(ρ, αc)

dρ
=

αc

√
πρ(ρ+ 1)

(
(1− αc)(ρ+ 1)

αc(1− ρ)

)− (1−ρ)2

4ρ

√
log

(
(1− αc)(ρ+ 1)

αc(1− ρ)

)
> 0.

And note that

lim
ρ→1

Ξ = lim
ρ→1

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
= +∞,

lim
ρ→1

(ρ− 1)Ξ = lim
ρ→1

(ρ− 1)

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
= lim

ρ→1
−

√
(1− ρ)2

2ρ
log

(
1

1− ρ

)
= 0,

lim
ρ→0

Ξ = lim
ρ→0

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
= +∞,

thus

lim
ρ→1

H(ρ, αc) = (1− αc) +
1

2
αc = 1− αc

2
> 1− α

2
,
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lim
ρ→0

H(ρ, αc) = (1− αc) = 1− αc < 1− α

2
,

where the inequality follows from αc ∈ (α2 , α). Thus H(ρ, αc) is strictly increasing in ρ ∈ (0, 1)

and there is unique solution that H(ρ∗) = 1− α
2 .

Lemma 11. Suppose Assumptions 1, 2, 3, 4, and 5 hold. If

sup
P∈P

max
b1∈B

min
b2∈B

ρℓ(b1, b2) < ρ∗(α, αc),

then there is α′ > α such that

lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n/n, α

′)
)
= 1.

Proof. Denote

Zb =
λ̂ℓ,b − θ
σ̂ℓ,b/
√
n
, Zℓ,b = −Zb, Zu,b = Zb.

Without loss of generality, assume that

T̂ (θ) = Z1 and ρ̂12 = ρ̂ℓ(1, 2) ≤ ρ∗(α, αc).

The lower bound is

tu,1 = min
b̃∈B

(
1 + ρ(b̃, 1)

)−1 (
Zℓ,b̃ + ρ(b̃, 1)Zu,1

)
≤ ρ12Z1 −Z2

1 + ρ12

and the upper bound is

tu,2 = min
b̃∈B:ρu(b̃,1)<1

(
1− ρu(b̃, 1)

)−1 (
Zu,b̃ − ρu(b̃, 1)Zu,1

)
≤ Z2 − ρ12Z1

1− ρ12
.

This θ is rejected if

Φ(Z1) > Φ(ĉc) = (1− αc)Φ (tu,2) + αcΦ (tu,1) .

Since by construction, Z2 ≥ Z1, it sufficies to show that

Φ(Z1) > sup
z2≥Z1

(1− αc)Φ

(
z2 − ρ12Z1

1− ρ12

)
+ αcΦ

(
ρ12Z1 − z2
1 + ρ12

)
. (141)

Let

H(z2) = (1− αc)Φ

(
z2 − ρ12Z1

1− ρ12

)
+ αcΦ

(
ρ12Z1 − z2
1 + ρ12

)
,

and it is easy to see that

lim
z2→∞

H(z2) = 1− αc < Φ (Z1) ,

and

H(Z1) = (1− αc)Φ (Z1) + αcΦ

(
ρ12 − 1

1 + ρ12
Z1

)
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< (1− αc)Φ (Z1) +
αc

2
< Φ (Z1) ,

where the second line follows from Z1 ≥ c̄ > 0. The first order derivative of H(z2) with respect

to z2 is

h(z2) =
1− αc

1− ρ12
ϕ

(
z2 − ρ12Z1

1− ρ12

)
− αc

1 + ρ12
ϕ

(
ρ12Z1 − z2
1 + ρ12

)
.

And h(z2) ≥ 0 is equivalent to

log

(
1− αc

αc

1 + ρ12
1− ρ12

)
≥ log

(
ϕ

(
ρ12Z1 − z2
1 + ρ12

))
− log

(
ϕ

(
z2 − ρ12Z1

1− ρ12

))
=

2ρ12 (z2 −Z1ρ12)
2(

1− ρ212
)2 . (142)

(i) If 2αc − 1 < ρ ≤ 0, then (142) holds trivially, and thus

sup
z2≥Z1

H(z2) = lim
z2→∞

H(z2) < Φ (Z1) ,

and (141) holds.

(ii) If −1 ≤ ρ < 2αc − 1, straightforward calculation shows that H(z2) decreases in

[max {Z1, z
∗
2} , z∗2 ] and increases in [z∗2 ,+∞), where

z∗2 = ρZ1 + (1− ρ2)
√
Ξ.

Thus

sup
z2≥Z1

H(z2) ≤ max

{
H(Z1), lim

z2→∞
H(z2)

}
< Φ (Z1) .

(iii) if ρ ∈
(
0, ρ∗(α, αc)− ξ

2

)
, straightforward calculation shows that H(z2) increases in

[max {Z1, z
∗
2} , z∗2 ] and decreases in [z∗2 ,+∞), thus

sup
z2≥Z1

H(z2) ≤ H(z∗2) = (1− αc)Φ ((1 + ρ)Ξ) + αcΦ ((ρ− 1)Ξ) < Φ (Z1) ,

where the last inequality is by Lemma 10.

Lemma 12. Suppose Assumptions 1, 2, 3, and 4 hold. And Λ̂η is defined as in (68). Let

α ∈ (0, 12), α
c ∈ (α2 , α), η ∈ [0, α−αc

2 ). In addition, assume (36). It holds that

lim inf
n

inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

2
)

)
= 1.

Proof. If η = 0, trivial, following from the discussion around (17). If η ∈ (0, α−αc

2 ), trivial too,

as ĉt
p−→ Φ−1(1− α+ η).
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D Proof for Section 4

This proof follows closely from Kaido et al. (2019). The key difference is that (i) I adjust the

covariance matrix Σ for the estimation uncertainty in φ̂; (ii) I linearize the moment conditions

and λ̂ℓ, λ̂u with a slightly different Taylor expansion, thus the definition of the Jacobian D is

different from theirs; (iii) because of different objective function, the linear program here has a

different structure from theirs.

D.1 Notation

The ε expansion of set A is defined as

Aϵ =
{
a ∈ Rda : dH(a,A) ≤ ϵ

}
,

where dH is the Hausdorff distance

dH(a,A) = inf
ã∈A
∥a− ã∥ .

Let m(X,β) be a K dimensional vector, with K = J + dℓ + du + dφ, and

m(X,β) =


mJ (X;β, φ)

mℓ(X;β, φ)

mu(X;β, φ)

mφ(X)

 .

That is, with slight abuse of notation, I denote mJ+1 as the first element of mℓ, etc. For each

(β, φ), (β̃, φ) ∈ B × Φ and P , let ΩP

(
(β, φ), (β̃, φ̃)

)
∈ RK×K denote

ΩP

(
(β, φ), (β̃, φ̃)

)
= cov

(
m(Xi;β, φ) , m

′(Xi; β̃, φ̃)
)
,

and I use ΩP (β) for ΩP ((β, φP ), (β, φP )). And let ωj(β, φ) =
√
ΩP,jj ((β, φ), (β, φ)). Let

G̃n(β, φ) =


G̃n,J (β, φ)

G̃n,ℓ(β, φ)

G̃n,u(β, φ)

G̃n,φ

 =


√
n (m̄J (β, φ)− E [mJ (Xi;β, φ)])√
n (m̄ℓ(β, φ)− E [mℓ(Xi;β, φ)])√
n (m̄u(β, φ)− E [mu(Xi;β, φ)])√

n (m̄φ − E [mφ(Xi)])

 . (143)

Table 5 summarizes other notations used in this proof.

D.2 Additional Assumptions

Assumption 10. All distributions P ∈ P satisfy the following:

1. EP [mj (Xi, β)] ≤ 0, j = 1, . . . , J1 and EP [mj (Xi, β)] = 0, j = J1 + 1, . . . , J1 + J2 for

some β ∈ B;
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Table 5: Notation

Notation Defined in Equation Notation Defined in Equation

G̃n (143) ζn,j, ζn,k (155), (163)
γ1,P,j(β), γ1,P,k(β) (146), (164) cπ∗ (200)
γ0,P,j(β) (147) cIn (βn) (201)
π1j (150) cIn,ρ(β) (205)
π∗
1j (151) ĉn,ρ (186)
ūn,j,βn(∆) (157), (160) µ̂n,j, j = 1, ..., 2R1 (145)
un,j,βn(∆)un,k,βn(∆) (182) (183) σ̂M

j , j = 1, ..., 2R1 (144)
Un,ℓ, Un,u (184), (185) ∆n,ρ (165)
vIn,j,β′

n
(∆) (203) ϕ∗

j (204)

V I
n (β′

n, c) (202) Zn,j,βn(∆), Zn,k,βn (158), (162)
vsn,j,β′

n
(∆) (253) η̂n,j,βn(∆) (159), (161)

V s
n (β′

n, c) (252) τ̂n,j,β, τ̂n,k,β (170), (176)
wj(∆) (195) µ̃j, µ̃k (168), (169), (175)
W, W∗ (196), (209) U∗

n (208)
Wδ(c) (197)

2. {Xi, i ≥ 1} are i.i.d.;

3. There is ϵ > 0 such that σ2P,j(β) ∈ [ϵ, 1/ϵ] for j = 1, . . . , J1 + J2, ℓ, u for all β ∈ B;

4. For some δ > 0 and M ∈ (0,∞) and

EP

[
sup
β∈B
|mj (Xi;β, φP )|2+δ

]
≤M, ∀j = 1, ...,K.

Assumption 11. All distributions P ∈ P satisfy one of the following two conditions for some

constants ω > 0, ε > 0,M < ∞. The functions mj (Xi;β, φ), j = 1, ...,K, are defined on

X ×Bε×Φε. There exists R1 ∈ N, 1 ≤ R1 ≤ J1/2 and measurable functions tj : X ×B
ε×Φε →

[0,M ], j ∈ R1 = {1, ..., R1} such that for each j ∈ R1,

mj+R1 (X;β, φ) = −mj (X;β, φ)− tj (X;β, φ)

For each j ∈ R1 ∩ J1(P, β, ε), and any choice j̈ ∈ {j, j +R1}, one of the following holds:

1. One has

inf
β∈B(P )

eig
(
ΣJ̈k

)
≥ ω,

where

J̈k =
{
j̈ : j ∈ R1 ∩ J1(P, β, ε)

}
∪ J1(P, β, ε)\ {1, ..., 2R1}

∪ Jk(P, β; ε).

and J1 and Jk are defined in (65) and (66).
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2. There is t0 : B
ε × Φε → [0,M ] such that

λ†ℓ (EP [mℓ(Xi;β, φ)])− λ†u (EP [mu(Xi;β, φ)]) = −t0(β, φ).

Let k = ℓ, u and

J̊k = J̈k\[k].

One has

inf
β∈B(P )

eig
(
ΣJ̊ℓ

)
≥ ω, and inf

β∈B(P )
eig
(
ΣJ̊u

)
≥ ω.

Assumption 11 is an analog of Kaido et al. (2019) Assumption E3.2. Under the condition

that the sum of two moments is non-positive, we only need the rank condition to hold for each

of the moments, but not jointly.

Assumption 12. All distributions P ∈ P satisfy the following conditions:

1. The class of functions
{
ω−1
P,j(β, φ)mj(·, β, φ) : X → R, β ∈ B, φ ∈ Φ

}
is measurable for

each j = 1, . . . ,K.

2. The empirical process G̃n is uniformly asymptotically ϱP -equicontinuous. That is, for any

ϵ > 0,

lim
δ↓0

lim sup
n→∞

sup
P∈P

P

(
sup

ϱP ((β,φ),(β̃,φ̃))<δ

∥∥∥G̃n(β, φ)− G̃n(β̃, φ̃)
∥∥∥ > ϵ

)
= 0

3. ΩP satisfies

lim
δ↓0

sup
∥((β1,φ1),(β̃1,φ̃1))−((β2,φ2),(β̃2,φ̃2))∥<δ

sup
P∈P

∥∥∥ΩP

(
(β1, φ1), (β̃1, φ̃1)

)
− ΩP

(
(β2, φ2), (β̃2, φ2)

)∥∥∥ = 0.

D.3 Details of the Inference Procedure

If Assumption 11 is invoked, we make the following adjustment to the inference procedure.

In (51), we replace the estimated standard deviation σ̂1, ..., σ̂2R1 with σ̂M1 , ..., σ̂
M
2R1

. For

j = 1, ..., R1, let [j] = j +R1 and

σ̂Mj (β) = σ̂M[j] (β) = µ̂n,j(β)σ̂j(β) + (1− µ̂n,j(β)) σ̂[j](β). (144)

with

µ̂n,[j] (β) = min

max

0,

m̄n,j(β,φ̂)
σ̂n,j(β,φ̂)

m̄n,[j](β,φ̂)

σ̂n,[j](β,φ̂)
+

m̄n,j(β,φ̂)
σ̂n,j(β,φ̂)

 , 1

 ,

µ̂n,j (β) = 1− µ̂n,[j] (β, φ̂) .

(145)

In (55), if

ξ̂n,j(β) = 0 = ξ̂n,[j](β),

we replace Zb
n,[j](β) with −Z

b
n,j(β) and D̂n,[j](β) with −D̂n,j(β) for j = 1, ..., R1.
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And if Assumption 11.2 is invoked, we do similar adjustment for λ̂ℓ and λ̂u. That is, if

ξ̂n,0(β) = 0, we replace σ̂ℓ(β) with σ̂u(β) in (50), and replace Z∗
n,ℓ(β) with −Z∗

u(β) and D̂n,ℓ(β)

with −D̂n,u(β) in (53), (54).

D.4 Proof of Theorem 1

Proof. Let γP = (γ1,P , γ2,P , γ3,P ), where γ1,P = (γ1,P,1, . . . , γ1,P,J , γ1,P,0) with

γ1,P,j(β) = σ−1
P,j(β)EP [mj (Xi, β, φP )] , j = 1, ..., J, (146)

γ1,P,0(β) =
λP,ℓ(β, φP )− λP,u(β, φP )

max {σP,u(β), σP,ℓ(β), σP,uℓ(β)}
(147)

γ2,P = (vech (ΩP (β)) , vec (DP (β)) , vec (GP (β))), and γ3,P = P . We proceed in steps.

Step 1. Let

{Pn, βn, θn} ∈ {(P, β, θ) : P ∈ P, β ∈ B(P ), θ ∈ [λP,ℓ(β, φP ), λP,u(β, φP )]}

be a sequence such that

lim inf
n→∞

inf
P∈P

inf
β∈B(P )

inf
θ∈[λℓ(β,φP ),λu(β,φP )]

P (θn ∈ CIn) = lim inf
n→∞

Pn (θn ∈ CIn) . (148)

Let {ln} be a subsequence of {n} such that

lim inf
n→∞

Pn (θn ∈ CIn) = lim
n→∞

Pln (θln ∈ CIln) . (149)

Then there is a further subsequence {an} of {ln} such that

lim
an→∞

κ−1
an

√
anγ1,Pan ,j (βan) = π1,j ∈ R[−∞], j = 0, 1, . . . , J. (150)

To simplify notation, I write (Pn, βn, θn) to refer to (Pan , βan , θan) throughout this Appendix.

For j = 0, 1, ..., J , let

π∗1,j =

{
0 if π1,j = 0

−∞ if π1,j < 0
. (151)

The true value θn is covered when inf β̃ λ̂ℓ(β̃)−
σ̂ℓ(β̃)√

n
ĉ(β̃)

s.t. β̃ ∈ B,
√
nm̄n,j(β̃,φ̂)

σ̂j(β̃)
≤ ĉ(β̃), ∀j = 1, ..., J

 ≤ θn
≤

 supβ̃ λ̂u(β̃) +
σ̂u(β̃)√

n
ĉ(β̃)

s.t. β̃ ∈ B,
√
nm̄n,j(β̃,φ̂)

σ̂j(β̃)
≤ ĉ(β̃),∀j = 1, ..., J
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⇔


inf∆

√
n
(
λ̂ℓ

(
βn+

∆ρ√
n

)
−θn

)
σ̂ℓ

(
βn+

∆ρ√
n

) − ĉ
(
βn + ∆ρ√

n

)
s.t. ∆ ∈

√
n
ρ

(
B − βn

)
,

√
nm̄n,j

(
βn+

∆ρ√
n
,φ̂
)

σ̂j

(
βn+

∆ρ√
n

) ≤ ĉ
(
βn + ∆ρ√

n

)
, ∀j = 1, ..., J

 ≤ 0 and


inf∆

√
n
(
θn−λ̂u

(
βn+

∆ρ√
n

))
σ̂u

(
βn+

∆ρ√
n

) − ĉ
(
βn + ∆ρ√

n

)
s.t. ∆ ∈

√
n
ρ

(
B − βn

)
,

√
nm̄n,j

(
βn+

∆ρ√
n
,φ̂
)

σ̂j

(
βn+

∆ρ√
n

) ≤ ĉ
(
βn + ∆ρ√

n

)
, ∀j = 1, ..., J

 ≤ 0

(152)

where in (152), I simply replace β̃ with βn + ∆ρ√
n
.

Step 2. Simplify

√
nm̄n,j

(
βn + ∆ρ√

n
, φ̂
)

σ̂j

(
βn + ∆ρ√

n

) ,
λ̂ℓ

(
βn + ∆ρ√

n

)
− θn

σ̂ℓ

(
βn + ∆ρ√

n

)
/
√
n

and
θn − λ̂u

(
βn + ∆ρ√

n

)
σ̂u

(
βn + ∆ρ√

n

)
/
√
n
.

Straightforward calculation gives

√
nm̄n,j

(
βn + ∆ρ√

n
, φ̂
)

σ̂j

(
βn + ∆ρ√

n

) =

1 +
σPn,j (βn)

σ̂j

(
βn + ∆ρ√

n

) − 1

×
G̃n,j

(
βn + ∆ρ√

n
, φPn

)
σPn,j (βn)

+
m̄n,j

(
βn + ∆ρ√

n
, φ̂
)
− m̄n,j

(
βn + ∆ρ√

n
, φPn

)
σPn,j (βn) /

√
n

(153)

EPn

[
mj

(
βn + ∆ρ√

n
, φPn

)]
− EPn [mj (βn, φPn)]

σPn,j (βn) /
√
n

+
√
nγ1,n,j (βn)

 . (154)

Then I further simplify each element. For (153),

m̄n,j

(
βn + ∆ρ√

n
, φ̂
)
− m̄n,j

(
βn + ∆ρ√

n
, φPn

)
σPn,j (βn) /

√
n

=
EPn

[
mj

(
βn + ∆ρ√

n
, φ
)]

φ=φ̂
− EPn

[
mj

(
βn + ∆ρ√

n
, φPn

)]
σPn,j (βn) /

√
n

+ ζn,j

=
∇φ′EPn [mj (βn, φ̄)]∇m′

φ
φ̄†

σPn,j (βn)
G̃n,φ + ζn,j

where G̃n is defined in (143), φ̄ is between φPn and φ̂, ∇m′
φ
φ̄† = ∇m′

φ
φ†
∣∣∣
m̃φ

for some m̃φ

between m̄φ and E[mφ(W )],

ζn,j =
G̃n,j

(
βn + ∆ρ√

n
, φ̂n

)
− G̃n,j

(
βn + ∆ρ√

n
, φPn

)
σPn,j (βn)

. (155)
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As for (154), there is some β̄n between βn and βn + ∆ρ√
n
such that

EPn

[
mj

(
βn + ∆ρ√

n
, φPn

)]
− EPn [mj (βn, φPn)]

σPn,j (βn) /
√
n

=
σPn,j

(
β̄n
)

σPn,j (βn)
DPn,j

(
β̄n
)
∆ρ

In sum,

√
nm̄n,j

(
βn + ∆ρ√

n
, φ̂
)

σ̂n,j

(
βn + ∆ρ√

n

) = ūn,j,βn(∆) (156)

where

ūn,j,βn(∆) = (1 + η̂n,j,βn(∆))

(
Zn,j,βn +

σPn,j

(
β̄n
)

σPn,j (βn)
DPn,j

(
β̄n
)
∆ρ+

√
nγ1,Pn,j (βn, φPn)

)
,

(157)

Zn,j,βn(∆) =
G̃n,j

(
βn + ∆ρ√

n
, φPn

)
+∇φ′EPn

[
mj

(
β̄n, φPn

)]
∇m′

φ
φ̄†G̃n,φ

σPn,j (βn)
+ ζn,j , (158)

η̂n,j,βn(∆) =
σPn,j (βn)

σ̂j

(
βn + ∆ρ√

n

) − 1. (159)

Similarly, for k = ℓ, u, it holds that

√
n
(
λ̂ℓ

(
βn + ∆ρ√

n
, φ̂
)
− θn

)
σ̂ℓ

(
βn + ∆ρ√

n

) = ūn,ℓ,βn(∆),

√
n
(
θn − λ̂u

(
βn + ∆ρ√

n
, φ̂
))

σ̂u

(
βn + ∆ρ√

n

) = ūn,u,βn(∆),

where

ūn,k,βn(∆) = (1 + η̂n,k,βn(∆))

(
Zn,k,βn +

σPn,k

(
β̄n
)

σPn,k (βn)
DPn,k

(
β̄n
)
∆ρ+

√
nγ1,Pn,k(βn)

)
(160)

with

η̂n,k,βn(∆) =
σPn,k (βn)

σ̂k

(
βn + ∆ρ√

n

) − 1, (161)

Zn,k,βn =
G̃n,k

(
βn + ∆ρ√

n
, φPn

)
+∇m′

k
λPn,k∇φ′EPn

[
mk

(
β̄n, φPn

)]
∇m′

φ
φ̄†G̃n,φ

σPn,j (βn)
+ ζn,k, (162)

ζn,k =
G̃n,k

(
βn + ∆ρ√

n
, φ̂n

)
− G̃n,k

(
βn + ∆ρ√

n
, φPn

)
σPn,k (βn)

, (163)
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γ1,Pn,ℓ(βn) =
λℓ

(
βn + ∆ρ√

n
, φP

)
− θn

σPn,ℓ (βn)
, γ1,Pn,u(βn) =

θn − λu
(
βn + ∆ρ√

n
, φP

)
σPn,u (βn)

. (164)

Therefore,

(152)⇔


inf∆ ūn,ℓ,βn(∆)− ĉ

(
βn + ∆ρ√

n

)
s.t. ∆ ∈

√
n
ρ

(
B − βn

)
,

ūn,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j = 1, ..., J

 ≤ 0, and


inf∆ ūn,u,βn(∆)− ĉ

(
βn + ∆ρ√

n

)
s.t. ∆ ∈

√
n
ρ

(
B − βn

)
,

ūn,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j = 1, ..., J

 ≤ 0.

Denote

∆n,ρ =

√
n

ρ

(
B − βn

)
∩∆, (165)

with ∆ =
{
x ∈ Rd : |xi| ≤ 1, i = 1, . . . , d

}
. Then the event in (152) is implied by

inf∆ ūn,ℓ,βn(∆)− ĉ
(
βn + ∆ρ√

n

)
s.t. ∆ ∈∆n,ρ,

ūn,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j = 1, ..., J

 ≤ 0, and


inf∆ ūn,u,βn(∆)− ĉ

(
βn + ∆ρ√

n

)
s.t. ∆ ∈∆n,ρ,

ūn,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j = 1, ..., J

 ≤ 0.

(166)

Step 3. This step is used only when Assumption 11 is invoked. When this assumption is

invoked, recall we use modification in Section D.3. For each j = 1, ..., R1 such that

π∗1,j = π∗1,j+R1
= 0, (167)

let

µ̃j = 1− µ̃j+R1 , (168)

µ̃j+R1 =

{
0 if γ1,Pn,j (β) = γ1,Pn,j+R1 (β) = 0

τ̂n,j,βn (∆)
τ̂n,j,βn (∆)+τ̂n,j+R1,βn

(∆) otherwise,
(169)

with

τ̂n,j,β(∆) = γ1,Pn,j (βn) (1 + η̂n,j,βn (∆)) . (170)

For each j = 1, ..., R1, replace the constraint indexed by j, that is

√
nm̄n,j

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj

(
βn + ∆ρ√

n

) ≤ ĉ
(
βn +

∆ρ√
n

)
, (171)

with the following weighted sum of the paired inequalities

µ̃j

√
nm̄n,j

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj

(
βn + ∆ρ√

n

) − µ̃j+R1

√
nm̄j+R1,n

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj+R1

(
βn + ∆ρ√

n

) ≤ ĉ
(
βn +

∆ρ√
n

)
, (172)
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and replace the constraint indexed by j +R1, that is

√
nm̄n,j+R1

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj+R1

(
βn + ∆ρ√

n

) ≤ ĉ
(
βn +

∆ρ√
n

)
, (173)

with

− µ̃j

√
nm̄n,j

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj

(
βn + ∆ρ√

n

) + µ̃j+R1

√
nm̄j+R1,n

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj+R1

(
βn + ∆ρ√

n

) ≤ ĉ
(
βn +

∆ρ√
n

)
. (174)

It then follows from Assumption 11 that these replacements are conservative because

m̄n,j+R1

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj+R1

(
βn + ∆ρ√

n

) ≤ −
m̄n,j

(
βn + ∆ρ√

n
, φ̂
)

σ̂Mj

(
βn + ∆ρ√

n

) ,

and therefore (172) implies (171) and (174) implies (173). Similarly, if Assumption 11.2 is

invoked, for k = ℓ, u, replace

ūn,k,βn(∆) ≤ ĉ
(
βn +

∆ρ√
n

)
with

µ̃kūn,k,βn(∆)− µ̃[k]ūn,[k],βn
(∆) ≤ ĉ

(
βn +

∆ρ√
n

)
,

where µ̃u = 1− µ̃ℓ and

µ̃ℓ =

{
0 if γ1,Pn,ℓ (β) = γ1,Pn,u (β) = 0

τ̂n,u,βn (∆)
τ̂n,ℓ,βn (∆)+τ̂n,u,βn (∆) otherwise,

(175)

with

τ̂n,k,β(∆) = γ1,Pn,k (βn) (1 + η̂n,k,βn (∆)) . (176)

Step 4. Next, I show that we can replace the term
√
nγ1,Pn,j (βn) with π

∗
1,j . For j = 1, ..., J1,

π∗1,j = 0⇒ π∗1,j ≥
√
nγ1,Pn,j (βn) , (177)

π∗1,j = −∞⇒
√
nγ1,Pn,j (βn)→ −∞. (178)

For any constraint j for which π∗1,j = 0, (177) yields that replacing
√
nγ1,Pn,j (βn) in (166) with

π∗1,j introduces a conservative distortion. Under Assumption 11, for any j such that (167) holds,

the substitutions in (172) and (174) yield

µ̃jγ1,Pn,j (βn, φPn) (1 + η̂n,j,βn (∆))− µ̃j+R1γ1,Pn,j+R1 (βn, φPn) (1 + η̂n,j+R1,βn (∆)) = 0

and therefore replacing this term with π∗1,j = 0 = π∗1,j+R1
is inconsequential. Same applies to

the constraints on ũn,u,βn and ũn,ℓ,βn .

For any j for which π∗1,j = −∞, (178) yields that for n large enough,
√
nγ1,Pn,j (βn) can be
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replaced with π∗1,j . To see this, note that under Assumption 7, Assumption 10.3, Assumption

12.3 and ∆ ∈∆d
n,ρ, it follows that

σFn,j

(
β̄n
)

σFn,j (βn)
DFn,j

(
β̄n
)
∆ρ = O(1).

Together with Lemma 21.1 and Lemma 22, it holds that

Pn

(
max

j:π∗
1,j=−∞

ūn,j,βn(∆) ≤ 0, ∀∆ ∈∆d
n,ρ

)
→ 1. (179)

Since ĉ
(
βn + ∆ρ√

n

)
≥ 0 by construction, ūn,j,βn(∆) ≤ ĉ

(
βn + ∆ρ√

n

)
with π∗1,j = −∞ is asmptot-

ically not bingding and thus negligible. We therefore have that for n ≥ N ,

Pn




inf∆ ūn,ℓ,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

ūn,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j

 ≤ ĉ
(
βn +

∆ρ√
n

)
, and (180)


inf∆ ūn,u,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

ūn,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
, ∀j

 ≤ ĉ
(
βn +

∆ρ√
n

)+ o(1)

≥Pn




inf∆ ūn,ℓ,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j

 ≤ ĉ
(
βn +

∆ρ√
n

)
, and (181)


inf∆ ūn,u,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
, ∀j

 ≤ ĉ
(
βn +

∆ρ√
n

) .

where

un,j,βn(∆) = (1 + η̂n,j,βn(∆))

(
Zn,j,βn(∆) +

σPn,j

(
β̄n
)

σPn,j (βn)
DPn,j

(
β̄n
)
∆ρ+ π∗1,j

)
. (182)

Hence, I focus on the event in (181) here and after.

Step 5. I replace ūn,ℓ,βn and ūn,u,βn with un,ℓ,βn and un,u,βn . First, note that if π∗1,0 = 0,

(181) ≥Pn




inf∆ un,ℓ,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
, ∀j

 ≤ ĉ
(
βn +

∆ρ√
n

)
, and


inf∆ un,u,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j

 ≤ ĉ
(
βn +

∆ρ√
n

)
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where

un,k,βn(∆) = (1 + η̂n,k,βn(∆))

(
Zn,k,βn(∆) +

σPn,k

(
β̄n
)

σPn,k (βn)
DPn,k

(
β̄n
)
∆ρ

)
. (183)

If π∗1,0 = −∞, we have either
√
nγ1,Pn,ℓ(βn)→ −∞ or

√
nγ1,Pn,u(βn)→ −∞ or both, thus

(181) ≥min

Pn




inf∆ un,ℓ,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j

 ≤ ĉ
(
βn +

∆ρ√
n

) ,

Pn




inf∆ un,u,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉ
(
βn + ∆ρ√

n

)
,∀j

 ≤ ĉ
(
βn +

∆ρ√
n

)
+ o(1).

In sum, let

Un,ℓ (βn, c) =
{
∆ ∈∆d

n,ρ : un,ℓ,βn(∆) ≤ c, un,u,βn(∆) + π∗1,0 ≤ c, un,j,βn(∆) ≤ c,∀j = 1, . . . , J
}
,

(184)

Un,u (βn, c) =
{
∆ ∈∆d

n,ρ : un,u,βn(∆) ≤ c, un,ℓ,βn(∆) + π∗1,0 ≤ c, un,j,βn(∆) ≤ c,∀j = 1, . . . , J
}
.

(185)

It holds that

(181) ≥ min

{
Pn

(
Un,ℓ

(
βn, ĉ

(
βn +

∆ρ√
n

))
̸= ∅
)
, Pn

(
Un,u

(
βn, ĉ

(
βn +

∆ρ√
n

))
̸= ∅
)}

.

Step 6. Simplify ĉ
(
βn + ∆ρ√

n

)
. By definition ĉ(·) ≥ 0 and thus ĉn,ρ defined by

ĉn,ρ = inf
∆∈∆d

n,ρ

ĉ

(
βn +

∆ρ√
n

)
(186)

exists. Therefore, the event whose probability is evaluated in (181) is implied by the event
inf∆ un,ℓ,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉn,ρ, ∀j = 1, ..., J

 ≤ ĉn,ρ, and


inf∆ un,u,βn(∆)

s.t. ∆ ∈∆d
n,ρ,

un,j,βn(∆) ≤ ĉn,ρ, ∀j = 1, ..., J

 ≤ ĉn,ρ.
(187)

Then by (187) and the definition of Un,ℓ and Un,u, we obtain

Pn (θn ∈ CIn) ≥ min {Pn (Un,ℓ (βn, ĉn,ρ) ̸= ∅) , Pn (Un,u (βn, ĉn,ρ) ̸= ∅)} . (188)

By passing to a further subsequence, we may assume that

DPn (βn)→ D,GPn (βn)→ G,
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for some (J + 2) × d matrix D such that ∥D∥ ≤ M , and some (J + 2) × K matrix G such

that ∥G∥ ≤M . In addition, we may assume that ΩPn

u−→ Ω for some covariance kernel Ω. And

ΩPn(βn)→ Ω. By Lemma 13,

lim inf
n→∞

min {Pn (Un,ℓ (βn, ĉn,ρ) ̸= ∅) , Pn (Un,u (βn, ĉn,ρ) ̸= ∅)} ≥ 1− α. (189)

The conclusion of the theorem then follows from (148), (149), (188), and (189).

D.5 Lemmas

In the proof, I focus on

lim inf
n→∞

Pn (Un,ℓ (βn, ĉn,ρ) ̸= ∅) ≥ 1− α,

and the proof for Pn (Un,u (βn, ĉn,ρ) ̸= ∅) is similar.

Throughout this Appendix, let (Pn, βn, θn) be a subsequence as defined in Step 1 in the

proof of Theorem 4. That is, along

{Pn, βn, θn} ∈ {(P, β, θ) : P ∈ P, β ∈ B(P ), θ ∈ [λP,ℓ(β, φP ), λP,u(β, φP )]}

one has

κ−1
n

√
nγ1,Pn,j (βn)→ π1j ∈ R[−∞], j = 0, . . . , J1 (190)

ΩPn

u→ Ω,

DPn (βn)→ D, (191)

GPn (βn)→ G. (192)

When Assumption 11 is invoked, I use modification in Section D.3. And if

π∗1,j = 0 = π∗1,j+R1
,

replace the constraints

Zj + ρDj∆ ≤ c,

Zj+R1 + ρDj+R1∆ ≤ c,

with

µj(β) {Zj + ρDj∆} − µj+R1(β) {Zj+R1 + ρDj+R1∆} ≤ c

−µj(β) {Zj + ρDj∆}+ µj+R1(β) {Zj+R1 + ρDj+R1∆} ≤ c

where

µj(β) =

 1 if γ1,Pn,j(β, φPn) = 0 = γ1,Pn,j+R1(β, φPn),
γ1,Pn,j+R1

(β,φPn )

γ1,Pn,j+R1
(β,φPn )+γ1,Pn,j(β,φPn )

otherwise,
(193)
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µj+R1(β) =

{
0 if γ1,Pn,j(β) = 0 = γ1,Pn,j+R1(β),

γ1,Pn,j(β,φPn )
γ1,Pn,j+R1

(β,φPn )+γ1,Pn,j(β,φPn )
otherwise,

. (194)

The same applies to the constraint on Zℓ and Zu.

To simplify notation, in the following proof we do not differentiate ℓ, u, and j. Moreover,

due to the substitutions in equations (172) and (174), the paired inequalities are now genuine

equalities. With some absue of notation, we index them among the j = J1 + 1, ..., J . That is,

under Assumption 9,

J1 = {1, ..., J1, ℓ, u} ,

J2 = {J1 + 1, ..., J1 + 2J2} .

Under Assumption 11.1,

J1 = {2R1 + 1, ..., J1, ℓ, u} ,

J2 = {1, ..., R1, J1 + 1, ..., J1 + J2} .

Under Assumption 11.2,

J1 = {2R1 + 1, ..., J1} ,

J2 = {1, ..., R1, J1 + 1, ..., J1 + J2, ℓ} .

In all three cases,

[J2] = {[j] : j ∈ J2} ,

J = J1 ∪ J2 ∪ [J2] .

Fix c ≥ 0. For each ∆ ∈ Rd and β ∈ (βn + ρ/
√
n∆) ∩ B, let

wj(∆) = Zj + ρDj∆+ π∗1,j , (195)

wℓ(∆) = Zℓ + ρDℓ∆,

wu(∆) = Zu + ρDu∆+ π∗1,0.

Let ∆d
∞,ρ = limn→∞∆d

n,ρ. Let

W(c) =
{
∆ ∈∆d

∞,ρ : wj(∆) ≤ c,∀j ∈ J
}
. (196)

With that convention, for given δ ∈ R, define

Wδ(c) =
{
∆ ∈∆d

∞,ρ : wj(∆) ≤ c+ δ, ∀j ∈ J1,wj(∆) ≤ c,∀j ∈ J2 ∪
[
J̄2
]}
. (197)
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Define the |J|+ 2d matrix

KP (β, ρ) =


[ρDP,j(β)]j∈J1∪J2
[−ρDP,j(β)]j∈J̄2

Id

−Id

 .

Given a square matrix A, we let eig(A) denote its smallest eigenvalue. In all lemmas below, we

assume α < 1/2.

Lemma 13. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11

hold. Then,

lim inf
n→∞

Pn (Uℓ,n (βn, ĉn,ρ) ̸= ∅) ≥ 1− α. (198)

Proof. Consider a subsequence along which

lim inf
n→∞

Pn (Uℓ,n (βn, ĉn,ρ) ̸= ∅)

is achieved as a limit. For notational simplicity, we use {n} for this subsequence below. Below,

we construct a sequence of critical values cIn (β
′
n) such that

ĉn
(
β′n
)
≥ cIn

(
β′n
)
+ op(1) (199)

and cIn (β
′
n)

p→ cπ∗ for any β′n ∈ (βn + ρ/
√
n∆) ∩ B, where

cπ∗ = inf {c ∈ R+ : P (W(c) ̸= ∅) ≥ 1− α} . (200)

The construction is as follows. When cπ∗ = 0, let cIn (β
′
n) = 0 for all β′n ∈ (βn + ρ/

√
n∆) ∩ B,

and hence cIn (β
′
n)

p→ cπ∗ . If cπ∗ > 0, let

cIn (βn) = inf
{
c ∈ R+ : P s

(
V I
n (βn, c) ̸= ∅

)
≥ 1− α

}
, (201)

where

V I
n

(
β′n, c

)
=
{
∆ ∈∆d

n,ρ : vIn,j,β′
n
(∆) ≤ c, j ∈ J

}
, (202)

vIn,j,β′
n
(∆) = Zs

n,j

(
β′n
)
+ ρD̂n,j

(
β′n
)
∆+ ϕ∗j

(
ξ̂n,j

(
β′n
))
, (203)

vIn,ℓ,β′
n
(∆) = Zs

n,ℓ (βn) + ρD̂n,ℓ

(
β′n
)
∆

vIn,u,β′
n
(∆) = Zs

n,u (βn) + ρD̂n,u

(
β′n
)
∆+ ϕ∗0

(
ξ̂n,0

(
β′n
))

ϕ∗j (ξ) =

ξ π1,j = 0

−∞ π1,j < 0
, ϕ∗0(ξ) =

ξ π1,0 = 0

−∞ π1,0 < 0
. (204)

and P s is from the conditional distribution of Zs
n conditional on the estimators. By Lemma

15.3, this critical value sequence satisfies (199). Further, by Lemma 15.2, cIn (β
′
n)

p→ cπ∗ for any
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β′n ∈ (βn + ρ/
√
n∆) ∩ B. For each β ∈ B, let

cIn,ρ(β) = inf
∆∈∆d

n,ρ

cIn

(
β +

∆ρ√
n

)
. (205)

Since the op(1) term in (199) does not affect the argument below, I redefine cIn,ρ (βn) as

cIn,ρ (βn)+ op(1). By (199) and simple addition and subtraction,

Pn (Un,ℓ (βn, ĉn,ρ (βn)) ̸= ∅)

≥Pn

(
Un,ℓ

(
βn, c

I
n,ρ (βn)

)
̸= ∅
)

=P (W (cπ∗) ̸= ∅) +
[
Pn

(
Un,ℓ

(
βn, c

I
n,ρ (βn)

)
̸= ∅
)
− P (W (cπ∗) ̸= ∅)

]
.

(206)

By Lemma 22,

Zn,j,βn(∆)
d→ Z ∼ N (0,Σ).

And by Assumption 9 and Assumption 12.3,

sup
β∈B

sup
∆∈∆

σPn,k

(
β̄n
)

σPn,k (βn)
→ 1

Moreover, by Lemma 21,

sup
β∈B

sup
∆∈∆

∥η̂n,j,β(∆)∥ p→ 0

uniformly in P, and by Lemma 15, cIn,ρ (βn)
p→ cπ∗ . Therefore, uniformly in ∆ ∈ ∆, it holds

that (
Zn,βn(∆),

{
η̂n,β(∆), cIn,ρ (βn)

)
d→ (Z, 0, cπ∗) . (207)

In what follows, using Lemma 1.10.4 in Van Der Vaart and Wellner (1996) I take(
Z∗
n(∆), η∗n(∆),

{
D∗

n,j

}
j≤J

, c∗n

)
to be the almost sure representation of the left hand side of (207), defined on some probability

space (Ω,F , P ) such that (Z∗
n(∆), η∗n(∆), c∗n)

a.s.→ (Z∗, 0, cπ∗), where Z∗ d
= Z. For each ∆ ∈ Rd,

we define

u∗n,j,βn
(∆) = (1 + η∗n(∆))

{
Z∗
n,j(∆) + ρ

σPn,j

(
β̄n
)

σPn,j (βn)
DPn,j

(
β̄n
)
∆+ π∗1,j

}
,

w∗
j (∆) = Z∗

j + ρDj∆+ π∗1,j ,

where we used that by Lemma 23.1, κ−1
n

√
nγ1,P,j (βn)−κ−1

n

√
nγ1,P,j (β

′
n) = o(1) uniformly over

β′n ∈ (βn + ρ/
√
n∆) ∩ B and therefore π∗1,j is constant over this neighborhood. Similarly, let

U∗
n (βn, c

∗
n) =

{
∆ ∈∆d

n,ρ : u∗n,j,βn
(∆) ≤ c∗n, ∀j ∈ J

}
, (208)

W∗ (cπ∗) =
{
∆ ∈∆d

∞,ρ : w∗
j (∆) ≤ cπ∗ , ∀j ∈ J

}
. (209)
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It then follows that equation (206) can be rewritten as

Pn ({Un (βn, ĉn,ρ (βn)) ̸= ∅})

≥P (W∗ (cπ∗) ̸= ∅) + [Pn (U
∗
n (βn, c

∗
n) ̸= ∅)− P (W∗ (cπ∗) ̸= ∅)] . (210)

By the definition of cπ∗ , we have

P (W∗ (cπ∗) ̸= ∅) ≥ 1− α.

Therefore, we are left to show that the second term on the right hand side of (210) tends to 0

as n→∞. Note that

|P (U∗
n (βn, c

∗
n) ̸= ∅)− P (W∗ (cπ∗) ̸= ∅)|

≤Pn ({U∗
n(βn, c

∗
n) = ∅} ∩ {W∗(cπ∗) ̸= ∅}) + Pn ({U∗

n(βn, c
∗
n) ̸= ∅} ∩ {W∗(cπ∗) = ∅}) . (211)

The conclusion holds because (211) converges to zero by Lemma 14.

Lemma 14. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11

hold. Let (Pn, βn, θn) have the almost sure representations given in Lemma 13. For any η > 0,

there exists N ∈ N such that

Pn ({U∗
n (βn, c

∗
n) ̸= ∅} ∩ {W∗ (cπ∗) = ∅}) ≤ η/2 (212)

Pn ({U∗
n (βn, c

∗
n) = ∅} ∩ {W∗ (cπ∗) ̸= ∅}) ≤ η/2, (213)

for all n ≥ N , where the sets in the above expressions are defined in equations (208) and (209).

Proof. Let J∗ =
{
j ∈ J : π∗1,j = 0

}
. Observe that for j = 1, ..., J, if π∗1,j = −∞, the correspond-

ing inequalities

u∗n,j,βn
(∆) = (1 + η∗n(∆))

{
Z∗
n,j(∆) + ρ

σPn,j

(
β̄n
)

σPn,j (βn)
DPn,j

(
β̄n
)
∆+ π∗1,j

}
≤ c∗n

w∗
j (∆) = Z∗

j + ρDj∆+ π∗1,j ≤ cπ∗

are satisfied with probability approaching one by similar arguments as in (179). Hence, we can

redefine the sets of interest as

U∗
n (βn, c

∗
n) =

{
∆ ∈∆d

n,ρ : u∗n,j,βn
(∆) ≤ c∗n,∀j ∈ J∗

}
(214)

W∗ (cπ∗) =
{
∆ ∈∆d

∞,ρ : w∗
j (∆) ≤ cπ∗ , ∀j ∈ J∗

}
. (215)

I first show (212). I bound the left hand side of (212) as

P ({U∗
n (βn, c

∗
n) ̸= ∅} ∩ {W∗ (cπ∗) = ∅})

≤P
(
{U∗

n (βn, c
∗
n) ̸= ∅} ∩

{
W∗,+δ (cπ∗) = ∅

})
(216)

+ P
({

W∗,+δ (cπ∗) ̸= ∅
}
∩ {W∗ (cπ∗) = ∅}

)
, (217)
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following from P (A ∩ B) ≤ P (A ∩ C) + P (B ∩ Cc) for any events A,B, and C. I will then

specify δ such that (216)≤ η
2 and (217)≤ η

2 . Lemma 17 (259) implies that there is some δ > 0

such that

P
({

W∗,+δ (cπ∗) ̸= ∅
}
∩ {W∗ (cπ∗) = ∅}

)
≤ sup

c≥0
P
(
{W∗ (c) ̸= ∅} ∩

{
W∗,−δ (c) = ∅

})
≤ η/2. (218)

Next, define the events

An(δ) =

{
sup
∆∈∆

max
j∈J∗

∣∣(u∗n,j,βn
(∆)− c∗n

)
−
(
w∗

j (∆)− cπ∗
)∣∣ ≥ δ} ,

with δ specified in (218). By Lemma 16 (257), for any η > 0 there exists N ∈ N such that

P (An) < η/2,∀n ≥ N. (219)

Define the event Ln = {U∗
n (βn, c

∗
n) ⊆W∗ (cπ∗ + δ)} and note that Ac

n ⊆ Ln. The right hand

side of (216) can further be bounded as

P ({U∗
n (βn, c

∗
n) ̸= ∅} ∩ {W∗ (cπ∗ + δ) = ∅}) ≤ P (U∗

n (βn, c
∗
n) ⊈ W∗ (cπ∗ + δ))

= P (Lc
n) ≤ P (An) < η/2 ∀n ≥ N, (220)

where the penultimate inequality follows from Ac
n ⊆ Ln as argued above, and the last inequality

follows from (219). Hence, (212) follows from (216), (217), (218), and (220).

To establish (213), I distinguish three cases.

Case 1. Suppose first that J2 = ∅, and hence one has only moment inequalities. Define the

event

R̃2n = {W∗ (cπ∗ − δ) ⊆ U∗
n (βn, c

∗
n)} . (221)

and note that Ac
n ⊆ R̃2n. The result in equation (213) then follows by Lemma 17 (259) using

again similar steps to (216)-(220).

Case 2. Next suppose that |J2| > d. Note that, by Lemma 19, there exists N ∈ N such that

for all n ≥ N , cIn(θ) is bounded from below by some c > 0 with probability approaching one

uniformly in P ∈ P and β ∈ B(P ). This ensures cπ∗ is bounded from below by c > 0. Note

that Ac
n ⊆ R̃2n, where R̃2n is defined as in (221), and therefore the same argument as in the

previous case applies using Lemma 17(261).

Case 3. Finally, suppose that 1 ≤ |J2| ≤ d. Recall that, with probability 1,

cπ∗ = lim
n→∞

c∗n, (222)

and note that by construction cπ∗ ≥ 0. Consider first the case that cπ∗ > 0. Then, by taking

δ < cπ∗ , the argument in Case 2 applies.
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Next, consider the case that cπ∗ = 0. Observe that

P ({U∗
n (βn, c

∗
n) = ∅} ∩ {W∗ (cπ∗) ̸= ∅}) ,

≤P
(
{U∗

n (βn, c
∗
n) = ∅} ∩

{
W∗,−δ(0) ̸= ∅

})
+ P

({
W∗,−δ(0) = ∅

}
∩ {W∗(0) ̸= ∅}

)
. (223)

By Lemma 17, for any η > 0 there exists δ > 0 and N ∈ N such that

P
({

W∗,−δ(0) = ∅
}
∩ {W∗(0) ̸= ∅}

)
< η/3

for all n ≥ N . Therefore, the second term of (223) can be made arbitrarily small.

I now consider the first term of (223), and it contains the following four steps.

Step 1. More notation. Let g be a |J|+ 2d vector with

gj =

−Zj , j ∈ J,

1, j = |J|+ 1, . . . , |J|+ 2d,
(224)

where I use that π∗1,j = 0 and the last assignment is without loss of generality because of the

considerations leading to the sets in (214), (215). For a given set C ⊂ {1, . . . , |J|+ 2d}, let the
vector gC collect the entries of gC corresponding to indices in C. Let

K =


[ρDj ]j∈J1∪J2
[−ρDj ]j∈J2

Id

−Id

 . (225)

Let the matrix KC collect the rows of K corresponding to indices in C. Let C̃ collect all size d

subsets C of {1, . . . , |J|+ 2d} ordered lexicographically by their smallest, then second smallest,

etc. elements. Let the random variable C equal the first element of C̃ s.t. detKC ̸= 0 and

∆C =
(
KC
)−1

gC ∈ W∗,−δ(0) if such an element exists; else, let C = {|J| + 1, . . . , |J| + d}
and ∆C = 1d, where 1d denotes a d vector with each entry equal to 1. Recall that W∗,−δ(0)

is a (possibly empty) measurable random polyhedron in a compact subset of Rd, see, e.g.,

Molchanov and Molchanov (2005) (Definition 1.1.1). Thus, if W∗,−δ(0) ̸= ∅, then W∗,−δ(0) has

extreme points, each of which is characterized as the intersection of d (not necessarily unique)

linearly independent constraints interpreted as equalities. Therefore, W∗,−δ(0) ̸= ∅ implies that

∆C ∈ W∗,−δ(0). Note that the associated random vector ∆C is a measurable selection of a

random closed set that equals W∗,−δ(0) if W∗,−δ(0) ̸= ∅ and equals ∆ otherwise, see, e.g.,

Molchanov and Molchanov (2005) (Definition 1.2.2).

Let gn be a |J|+ 2d vector with

gn,j(∆) =

c∗n/
(
1 + η∗n,j(∆)

)
− Z∗

n,j (∆) if j ∈ J

1, if j = |J|+ 1, . . . , |J|+ 2d
(226)
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using again that π∗1,j = 0 for j ∈ J∗. For each P ∈ P, let

KP (β, β̄, ρ) =



[
ρ
σPn,j(β̄)
σPn,j(β)

DP,j(β̄)

]
j∈J1∪J2[

−ρσPn,j(β̄)
σPn,j(β)

DP,j(β̄)

]
j∈J2

Id

−Id


. (227)

For each n and ∆ ∈∆, define the mapping ϕn : ∆→ Rd
[±∞] by

ϕn(∆) =
(
KC

Pn

(
βn, β̄ (βn,∆) , ρ

))−1
gCn (∆) , (228)

where the notation β̄ (βn,∆) emphasizes that β̄ depends on βn and ∆ because it lies component-

wise between βn and βn + ∆ρ√
n
.

Step 2. I show that ϕn is a contraction mapping and hence has a fixed point. For any

∆,∆′ ∈∆ write∥∥ϕn(∆)− ϕn
(
∆′)∥∥

=
∥∥∥(KC

Pn

(
βn, β̄ (βn,∆) , ρ

))−1
gCn (∆)−

(
KC

Pn

(
βn, β̄

(
βn,∆

′) , ρ))−1
gCn
(
∆′)∥∥∥

≤
∥∥∥(KC

Pn

(
βn, β̄ (βn,∆) , ρ

))−1
∥∥∥
2

∥∥gCn (∆)− gCn
(
∆′)∥∥

+
∥∥∥(KC

Pn

(
βn, β̄ (βn,∆) , ρ

))−1 −
(
KC

Pn

(
βn, β̄

(
βn,∆

′) , ρ))−1
∥∥∥
2

∥∥gCn (∆′)∥∥ ,
(229)

where ∥ · ∥2 denotes the spectral norm (induced by the Euclidean norm). By Assumption 12.2,

for any η > 0, k > 0, there is N ∈ N such that

Pn

(∥∥gCn(∆)− gCn(∆′)
∥∥ ≤ k ∥∥∆−∆′∥∥)

=Pn

(∥∥Z∗,C
n (∆)− Z∗,C

n (∆′)
∥∥ ≤ k ∥∥∆−∆′∥∥) ≥ 1− η,∀n ≥ N.

Moreover, for any η there exist 0 < L <∞ and N ∈ N such that ∀n ≥ N

P

(
sup
∆′∈∆

∥∥gCn (∆′)∥∥ ≤ L) ≥ 1− η. (230)

For any invertible matrix K,
∥∥K−1

∥∥
2
= (min {

√
α : α is an eigenvalue of KK ′})−1

. Hence,

by the proof of Lemma 18 and the definition of C, for any η > 0, there exists 0 < L < ∞ and

N ∈ N such that

P
(∥∥∥(KC)−1

∥∥∥
2
≤ L

)
≥ 1− η,∀n ≥ N.

By Johnson and Horn (1985) (ch. 5.8), for any invertible matricesK, K̃ such that
∥∥∥K̃−1(K − K̃)

∥∥∥
2
<

1 , ∥∥∥K−1 − K̃−1
∥∥∥
2
≤

∥∥∥K̃−1(K − K̃)
∥∥∥
2

1−
∥∥∥K̃−1(K − K̃)

∥∥∥
2

∥∥∥K̃−1
∥∥∥
2
. (231)
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By the assumption that DPn (βn) → D and
σPn,j(β̄)
σPn,j(β)

→ 1 and Assumption 7, for any η > 0,

there exists N ∈ N such that

sup
∆∈∆

∥∥KC
Pn

(
β̄ (βn,∆) , ρ

)
−KC∥∥

2
≤ η,∀n ≥ N.

By (231), the definition of the spectral norm, and the triangle inequality, for any η > 0, there

exist 0 < L1, L2 <∞ and N ∈ N such that

Pn

(
sup
∆∈∆

∥∥∥(KC
Pn

(
β̄ (βn,∆) , ρ

))−1
∥∥∥
2
≤ 2L1

)
≥Pn

(∥∥∥(KC)−1
∥∥∥
2
+ sup

∆∈∆

∥∥∥KC
Pn

(
β̄ (βn,∆) , ρ

)−1 −
(
KC)−1

∥∥∥
2
≤ 2L1

)

≥Pn

∥∥∥(KC)−1
∥∥∥
2
≤ L1,

∥∥∥(KC)−1
∥∥∥2
2

1−
∥∥∥(KC)−1 (KC

Pn

(
β̄ (βn,∆) , ρ

)
−KC

)∥∥∥
2

≤ L2,

sup
∆∈∆

∥∥KC
Pn

(
β̄ (βn,∆) , ρ

)
−KC∥∥

2
≤ L1

L2

)
≥1− 2η,∀n ≥ N, (232)

Again by applying (231), for any k > 0, there exists N ∈ N such that

Pn

(∥∥∥(KC
Pn

(
β̄ (βn,∆)

))−1 −
(
KC

Pn

(
β̄
(
βn,∆

′)))−1
∥∥∥
2
≤ k

∥∥∆−∆′∥∥)
≥Pn

(
sup
∆∈∆

∥∥∥(KC
Pn

(
β̄ (βn,∆)

))−1
∥∥∥2
2

Mρ2√
n

∥∥∆−∆′∥∥ ≤ k ∥∥∆−∆′∥∥) ≥ 1− η, ∀n ≥ N, (233)

where the first inequality follows from

∥∥KC
Pn

(
β̄ (βn,∆)

)
−KC

Pn

(
β̄
(
βn,∆

′))∥∥
2
≤Mρ

∥∥β̄ (βn,∆)− β̄
(
βn,∆

′)∥∥ ≤Mρ2/
√
n
∥∥∆−∆′∥∥

by Assumption 7, and the last inequality follows from (232).

By (229)-(230) and (232)-(233), it then follows that there exists a ∈ [0, 1) such that for any

η > 0, there exists N ∈ N such that

P
(∣∣ϕn(∆)− ϕn

(
∆′)∣∣ ≤ a ∥∥∆−∆′∥∥ , ∀∆,∆′ ∈∆

)
≥ 1− η, ∀n ≥ N. (234)

This implies that with probability approaching 1, each ϕn(·) is a contraction, and therefore by

the Contraction Mapping Theorem it has a fixed point (e.g., Pata and others (2019) (Theorem

1.1)). This in turn implies that for any η > 0 there exists a N ∈ N such that

P
(
∃∆f

n : ∆f
n = ϕn

(
∆f

n

))
≥ 1− η,∀n ≥ N. (235)

Step 3. I show that ∆C
n and ∆f

n are close enough. Next, define the mapping

ψn(∆) =
(
KC)−1

gC (236)
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This map is constant in ∆ and hence is uniformly continuous and a contraction with Lipschitz

constant equal to zero. It therefore has ∆C
n as its fixed point. Moreover, by (228) and (236)

arguing as in (229), it follows that for any ∆ ∈∆,

∥ψn(∆)− ϕn(∆)∥ ≤
∥∥∥(KC

Pn

(
βn, β̄ (βn,∆) , ρ

))−1
∥∥∥
2

∥∥gC − gCn (∆)
∥∥

+
∥∥∥(KC)−1 −

(
KC

Pn

(
βn, β̄ (βn,∆) , ρ

))−1
∥∥∥
2

∥∥gC∥∥ .
By (224) and (226)

∥∥gC − gCn(∆)
∥∥ ≤ max

j∈J∗

∣∣−Z∗
j − c∗n/

(
1 + η∗n,j(∆)

)
+ Z∗

n,j(∆)
∣∣

≤ max
j∈J∗

∣∣Z∗
j − Z∗

n,j (∆)
∣∣+max

j∈J∗

∣∣c∗n/ (1 + η∗n,j(∆)
)∣∣ . (237)

Moreover, Z∗
n (∆)

a.s.→ Z∗ and (222) implies c∗n → 0 so that we have

sup
∆∈∆

∥∥gC − gCn (∆)
∥∥ a.s.→ 0.

Further, by (226), DPn → D and, Assumption 7, for any η > 0, there exists N ∈ N such that

sup
∆∈∆

∥∥∥(KC)−1 −
(
KC

Pn

(
βn, β̄ (βn,∆) , ρ

))−1
∥∥∥
2
≤ η,∀n ≥ N. (238)

In sum, by (230), (232), and (237), (238), for any η, ν > 0, there exists N ≥ N such that

P

(
sup
∆∈∆

∥ψn(∆)− ϕn(∆)∥ < ν

)
≥ 1− η,∀n ≥ N. (239)

Hence, for a specific choice of ν = κ(1− a), where a is defined in equation (234), we have that

sup∆∈∆ ∥ψn(∆)− ϕn(∆)∥ < κ(1− a) implies∥∥∥∆C
n −∆f

n

∥∥∥ =
∥∥∥ψn

(
∆C

n

)
− ϕn

(
∆f

n

)∥∥∥
≤
∥∥ψn

(
∆C

n

)
− ϕn

(
∆C

n

)∥∥+ ∥∥∥ϕn (∆C
n

)
− ϕn

(
∆f

n

)∥∥∥
≤ κ(1− a) + a

∥∥∥∆C
n −∆f

n

∥∥∥
Rearranging terms, we obtain

∥∥∥∆C
n −∆f

n

∥∥∥ ≤ κ.
Step 4. I complete the proof. Note that by Assumptions 7 and 12.1, for any δ > 0, there

exists κδ > 0 and N ∈ N such that

P

(
sup

∥∆−∆′∥≤κδ

∣∣u∗n,j,βn
(∆)− u∗n,j,βn

(
∆′)∣∣ < δ

)
≥ 1− η,∀n ≥ N. (240)

For ∆C
n ∈W∗,−δ(0), one has

w∗
j

(
∆C

n

)
+ δ ≤ 0, j ∈ J1. (241)
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Hence, by (219), (222), and (240)-(241),
∥∥∥∆C

n −∆f
n

∥∥∥ ≤ κδ/4, for each j ∈ J1 we have

u∗n,j,βn

(
∆f

n

)
− c∗n (βn) ≤ u∗n,j,βn

(
∆C

n

)
− c∗n (βn) + δ/4 ≤ w∗

j

(
∆C

n

)
+ δ/2 ≤ 0.

For j ∈ {|J1|+ 1, . . . , |J1|+ 2|J2|}, the inequalities hold by construction given the definition of

C. In sum, for any η > 0 there exists δ > 0 and N ∈ N such that for all n ≥ N we have

P
(
{U∗

n (βn, c
∗
n) = ∅} ∩

{
W∗,−δ(0) ̸= ∅

})
≤ P

(
∄∆f

n ∈ U∗
n (βn, c

∗
n) , ∃∆C

n ∈W∗,−δ(0)
)

≤ P
({

sup
∆∈∆

∥ψn(∆)− ϕn(∆)∥ < κδ/4(1− a) ∩An(
δ

2
)

}c)
≤ η/3,

where Ac denotes the complement of the set A, and the last inequality follows from (219) and

(239).

Lemma 15. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or

11 hold. Let {Pn, βn, θn} be a sequence satisfying (190)-(191). Then, for any {β′n} such that

β′n ∈ (βn + ρ/
√
n∆) ∩ B for all n, it holds that

1. For any c > 0,

P b
n

(
V I
n

(
β′n, c

)
̸= ∅
)
− P (W(c) ̸= ∅)→ 0,

with probability approaching 1 ;

2. If cπ∗ > 0, cIn (β
′
n)

P→ cπ∗;

3.

ĉn
(
β′n
)
≥ cIn

(
β′n
)
+ oP (1).

Proof. (i) Throughout, let c > 0 and let {β′n} be a sequence such that β′n ∈ (βn + ρ/
√
n∆)∩B

for all n. By Assumption 7,
∥∥∥D̂ (β′n)−DPn (βn)

∥∥∥ p→ 0. Further, by Lemma 23, ξ̂n,j (β
′
n)

P→ π1,j .

Therefore, (
Zb
n

(
β′n
)
, D̂
(
β′n
)
, ξ̂n
(
β′n
))
| {Xi}∞i=1

d→ (Z, D, π1) (242)

for almost all sample paths {Xi}∞i=1. By Lemma H.17 in Kaido et al. (2019), conditional on the

sample path, there exists an almost sure representation
(
Z̃b
n, D̃n, ξ̃n

)
of
(
Zb
n (β

′
n) , D̂ (β′n) , ξ̂n (β

′
n)
)

defined on another probability space (Ω̃, F̃ , P̃ ) such that
(
Z̃b
n, D̃n, ξ̃n

)
d
=
(
Zb
n (β

′
n) , D̂ (β′n) , ξ̂n (β

′
n)
)

conditional on the sample path. In particular, conditional on the sample,
(
D̂ (β′n) , ξ̂n (β

′
n)
)
are

non-stochastic. Therefore, we set
(
D̃n, ξ̃n

)
=
(
D̂ (β′n) , ξ̂n (β

′
n)
)
, P̃ − a.s. The almost sure rep-

resentation satisfies
(
Z̃b
n, D̃n, ξ̃n,j

)
a.s.→

(
Z̃, D, π1

)
for almost all sample paths, where Z̃ d

= Z.

The almost sure representation
(
Z̃b
n, D̃n, ξ̃n

)
is defined for each sample path x∞ = {xi}∞i=1, but

we suppress its dependence on x∞ for notational simplicity. Using this representation, define

ṽIn,j,β′
n
(∆) = Z̃s

n,j + ρD̃n,j∆+ φ∗
j

(
ξ̃n,j

)
, (243)

ṽIn,ℓ,β′
n
(∆) = Z̃s

n,ℓ + ρD̃n,ℓ∆,
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ṽIn,u,β′
n
(∆) = Z̃s

n,u + ρD̃n,u∆+ φ∗
0

(
ξ̃n,0

)
,

w̃j(∆) = Z̃j + ρDj∆+ π∗1,j

w̃ℓ(∆) = Z̃ℓ + ρDℓ∆

w̃u(∆) = Z̃u + ρDu∆+ π∗1,0

where Z̃ d
= Z, and Z̃b

n → Z̃, P̃ − a.s. conditional on {Xi}∞i=1. With this construction, one may

write

∣∣P s
n

(
V I
n

(
β′n, c

)
̸= ∅
)
− P (W(c) ̸= ∅)

∣∣
=
∣∣∣P̃ (Ṽ I

n

(
β′n, c

)
̸= ∅
)
− P̃ (W̃(c) ̸= ∅)

∣∣∣
≤P̃

(
Ṽ I
n

(
β′n, c

)
= ∅ ∩ W̃(c) ̸= ∅

)
+ P̃

(
Ṽ I
n

(
β′n, c

)
̸= ∅ ∩ W̃(c) = ∅

)
. (244)

First, we bound the first term of (244). Note that

P̃
(
Ṽ I
n

(
β′n, c

)
= ∅ ∩ W̃(c) ̸= ∅

)
≤P̃

(
Ṽ I
n

(
β′n, c+ δ

)
= ∅ ∩ W̃(c) ̸= ∅

)
+ P̃

(
Ṽ I
n

(
β′n, c+ δ

)
̸= ∅ ∩ Ṽ I

n

(
β′n, c

)
= ∅
)
.

(245)

Let

An =

{
ω̃ ∈ Ω̃ : sup

∆∈∆
max
j∈J∗

∣∣∣ṽIn,j,β′
n
(∆)− w̃j(∆)

∣∣∣ ≥ δ} .
Let

E =

{
{xi}∞i=1 :

∥∥∥D̂ (β′n)−D∥∥∥ < η, max
j∈J∗

∣∣∣ϕ∗j (ξ̂n,j (β′n))− π∗1,j∣∣∣ < η

}
.

Note that, Pn(E) ≥ 1− η for all n sufficiently large by Assumption 7 and Lemma 23. On E, we

therefore have
∥∥∥D̃n −D

∥∥∥ < η and maxj∈J∗
∣∣∣ϕ∗j (ξ̃n,j)− π∗1,j∣∣∣ < η, P̃ − a.s. Below, we condition

on {Xi}∞i=1 ∈ E. For any j ∈ J∗,∣∣∣ṽIn,j,β′
n
(∆)− w̃j(∆)

∣∣∣ ≤ ∣∣∣Z̃s
n,j − Z̃j

∣∣∣+ ρ
∥∥∥D̃j,n −Dj

∥∥∥ ∥∆∥+ ∣∣∣ϕ∗j (ξ̃n,j)− π∗1,j∣∣∣ ≤ (2 + ρ)η,

uniformly in ∆ ∈ ∆, where we used Z̃s
n → Z̃, P̃ - a.s. Since η can be chosen arbitrarily small,

this in turn implies

P̃ (An) < η/2,

for all n sufficiently large. Note also that sup∆∈∆maxj∈J

∣∣∣ṽIn,j,β′
n
(∆)− w̃j(∆)

∣∣∣ < δ implies

W̃(c) ⊆ Ṽ I
n (β′n, c+ δ), and hence Ac

n is a subset of

Ln =
{
ω̃ ∈ Ω̃ : W̃(c) ⊆ Ṽ I

n

(
β′n, c+ δ

)}
.

Using this,

P̃
(
Ṽ I
n

(
β′n, c+ δ

)
= ∅ ∩ W̃(c) ̸= ∅

)
≤ P̃

(
W̃(c) ⊈ Ṽ I

n

(
β′n, c+ δ

))
(246)

= P̃ (Lc
n) ≤ P̃ (An) < η/2,
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for all n sufficiently large. Also, by Lemma 17,

P̃
(
Ṽ I
n

(
β′n, c+ δ

)
̸= ∅ ∩ Ṽ I

n

(
β′n, c

)
= ∅
)
< η/2, (247)

for all n sufficiently large. Combining (245), (246), (247), and using Pn(E) ≥ 1− η for all n, we

have ∫
E
P̃
(
Ṽ I
n

(
β′n, c

)
= ∅ ∩ W̃(c) ̸= ∅

)
dPn +

∫
Ec

P̃
(
Ṽ I
n

(
β′n, c

)
= ∅ ∩ W̃(c) ̸= ∅

)
dPn

≤η(1− η) + η ≤ 2η.

The second term of the right hand side of (244) can be bounded similarly. Therefore,

∣∣P s
(
V I
n

(
β′n, c

)
̸= ∅
)
− P (W(c) ̸= ∅)

∣∣→ 0

with probability (under Pn) approaching 1. This establishes the first claim.

(ii) By Part (i), for c > 0, we have

P s
n

(
V I
n

(
β′n, c

)
̸= ∅
)
− P (W(c) ̸= ∅)→ 0

Fix c > 0, and set

gj =

c− Zj , j ∈ J,

1, j = |J|+ 1, . . . , |J|+ 2d,

Mimic the argument following (247) and apply Lemma 17. Then, there is δ > 0 such that

|P (W(c) ̸= ∅)− P (W(c− δ) ̸= ∅)| = P ({W(c) ̸= ∅} ∩ {W(c− δ) = ∅}) ≤ η

|P (W(c+ δ) ̸= ∅)− P (W(c) ̸= ∅)| = P ({W(c+ δ) ̸= ∅} ∩ {W(c) = ∅}) ≤ η

which therefore ensures that c 7→ P (W(c) ̸= ∅) is continuous at c > 0.

Next, we show c 7→ P (W(c) ̸= ∅) is strictly increasing at any c > 0. For this, consider

c > 0 and c − δ > 0 for δ > 0. Define the |J| vector e to have elements ej = c − Zj , j ∈ J.
Suppose for simplicity that J∗ =

{
j ∈ J : π∗1,j = 0

}
contains the first J∗ inequality constraints.

Let eJ
∗
denote the subvector of e that only contains elements corresponding to j ∈ J∗, define

DJ∗ correspondingly, and write

K =

 DJ∗:

Id

−Id

 , g =

 eJ
∗

ρ · 1d
ρ · 1d

 , τ =

 1J∗

0d

0d

 . (248)

By Farkas’ lemma (R. Rockafellar (1970) Theorem 22.1) and arguing as in (268),

P ({W(c) ̸= ∅} ∩ {W(c− δ) = ∅})

=P
({
µ′g ≥ 0,∀µ ∈M

}
∩
{
µ′(g − δτ) < 0,∃µ ∈M

})
, (249)
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where M =
{
µ ∈ RJ∗+2d

+ : µ′K = 0
}
. By Minkowski-Weyl’s theorem (R. T. Rockafellar and

Wets (2009) Theorem 3.52), there exists
{
νt ∈M, t = 1, . . . , T

}
, for which one may write

M =

{
µ : µ = b

T∑
t=1

atν
t, b > 0, at ≥ 0,

T∑
t=1

at = 1

}
.

This implies

µ′g ≥ 0,∀µ ∈M⇔ νt′g ≥ 0,∀t ∈ {1, . . . , T},

µ′(g − δτ) < 0,∃µ ∈M⇔ νt′g < δνt′τ,∃t ∈ {1, . . . , T}.

Hence,

(249) =P
(
0 ≤ νs′g, 0 ≤ νt′g < δνt′τ,∀s,∃t

)
(250)

Note that by (248), for each s ∈ {1, . . . , T},

νs′g = (νs,J
∗
)′ (c1J∗ − ZJ∗) + ρ

J∗+2d∑
j=J∗+1

νs,j ,

νs′τ =
J∗∑
j=1

νs,j .

Hence

hUs = c

J∗∑
j=1

νs,j + ρ

J∗+2d∑
j=J∗+1

νs,j

hLs = (c− δ)
J∗∑
j=1

νs,j

where 0 ≤ hLs < hUs for all s ∈ {1, . . . , T} due to 0 < c − δ < c and νs ∈ RJ∗+2d
+ . One may

therefore rewrite the probability on the right hand side of (250) as

P
(
0 ≤ νs′g, 0 ≤ νt′g < δνt′τ,∀s,∃t

)
=P

(
νs,J

∗′
ZJ∗ ≤ hUs , hLt < νt,J

∗′ZJ∗ ≤ hUt , ∀s, ∃t
)
> 0, (251)

where the last inequality follows because ZJ∗ ’s correlation matrix Ω has an eigenvalue bounded

away from 0 by Assumption 9 and 11. By (249), (250), and (251), c 7→ P (W(c) ̸= ∅) is strictly
increasing at any c > 0.

Suppose that cπ∗ > 0, then arguing as in Lemma 5.(i) of D. W. K. Andrews and Guggen-

berger (2010), we obtain cIn (β
′
n)

Pn→ cπ∗

(iii) Begin with observing that one can equivalently express ĉℓ (originally defined in (53))

as ĉℓ(β) = inf {c ∈ R+ : P s
n (V

s
n (β, c) ̸= ∅) ≥ 1− α} where

V s
n

(
β′n, c

)
=
{
∆ ∈∆d

n,ρ : vsn,j,β′
n
(∆) ≤ c, j ∈ J

}
, (252)
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vsn,j,β′
n
(∆) = Zs

n,j

(
β′n
)
+ ρD̂n,j

(
β′n
)
∆+ ξ̂n,j

(
β′n
)
. (253)

Suppose first that Assumption 9 holds. In this case, there are no paired inequalities, and V I
n

differs from V s
n only in terms of the function ϕ∗j used in place of the GMS function ξ. In

particular, ϕ∗j (ξ) ≤ ξ for any j and ξ, and therefore ĉℓ (βn) ≥ cIn (βn) by construction.

Next, suppose that Assumption 11 holds. The only case that might create concern is one in

which

π1,j ∈ [−1, 0) and π1,j+R1 = 0.

In this case, only the j +R1-th inequality binds in the limit, but with probability approaching

1, GMS selects both in the pair. Therefore, we have

π∗1,j = −∞, and π∗1,j+R1
= 0,

ξ̂n,j
(
β′n
)
= 0, and ξ̂n,j+R1

(
β′n
)
= 0,

so that in V I
n (β′n, c), inequality j +R1, which is

Zs
n,j+R1

(
β′n
)
+ ρD̂n,j+R1

(
β′n
)
∆ ≤ c

is replaced with inequality

−Zs
n,j

(
β′n
)
− ρD̂n,j

(
β′n
)
∆ ≤ c,

as explained in Section D.3. In this case, ĉn (βn) ≥ cIn (βn) is not guaranteed in finite sample.

However, let vIPn be as in (203) but for j ∈ J2, replacing [j]-th component vIn,[j] with −v
I
n,j .

Define V IP
n as in (202) but replacing vIn with vIPn . Define

cIPn (βn) = inf
{
c ∈ R+ : P ∗ (V IP

n (βn, c)
)
≥ 1− α

}
.

By construction, ĉn (β
′
n) ≥ cIPn (β′n) for any β

′
n ∈

(
βn + ρ/

√
nBd

)
∩ B. Therefore, it suffices to

show that cIPn (β′n)− cIn (β′n)
p→ 0. For this, note that Lemma 20.3 and 20.4 establishes

sup
∆∈∆n,ρ

∥∥∥Zb
n,j+R1

(
β′n
)
+ ρD̂n,j+R1

(
β′n
)
∆+ Zb

n,j

(
β′n
)
+ ρD̂n,j

(
β′n
)
∆
∥∥∥ = oP (1),

for almost all sample paths {Xi}∞i=1. Therefore, replacing the j+R1-th inequality with the j-th

inequality in V IP
n is asymptotically negligible. Mimicking the arguments in Parts (i) and (ii)

then yields

cIPn
(
β′n
) p→ cπ∗ .

This therefore ensures cIPn (β′n)− cIn (β′n)
p→ 0.

Lemma 16. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11

hold. For any ε, η > 0 and β′n ∈
(
βn + ρ/

√
n[−1, 1]d

)
∩ B, there exists N ′ ∈ N such that for all

n ≥ N ′,

P

(
sup
∆∈∆

∣∣∣∣max
j∈J

(
u∗n,j,βn

(∆)− c∗n
)
−max

j∈J

(
w∗

j (∆)− cπ∗
)∣∣∣∣ ≥ ε) < η, (254)
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P̃

(
sup
∆∈∆

∣∣∣∣max
j∈J

w̃j(∆)−max
j∈J

ṽIn,j,β′
n
(∆)

∣∣∣∣ ≥ ε) < η, w.p. 1. (255)

Proof. We first establish (254). By definition, π∗1,j = −∞ for all j /∈ J∗ and therefore

P

(
sup
∆∈∆

∣∣∣∣max
j∈J

(
u∗n,j,βn

(∆)− c∗n
)
−max

j∈J

(
w∗

j (∆)− cπ∗
)∣∣∣∣ ≥ ε)

=P

(
sup
∆∈∆

∣∣∣∣max
j∈J∗

(
u∗n,j,βn

(∆)− c∗n
)
−max

j∈J∗

(
w∗

j (∆)− cπ∗
)∣∣∣∣ ≥ ε) . (256)

Hence, for the conclusion of the lemma, it suffices to show, for any ε > 0,

lim
n→∞

P

(
sup
∆∈∆

∣∣∣∣max
j∈J∗

(
u∗n,j,βn

(∆)− c∗n
)
−max

j∈J∗

(
w∗

j (∆)− cπ∗
)∣∣∣∣ ≥ ε) = 0.

For each ∆ ∈ Rd, define rn,j,βn(∆) ≡
(
u∗n,j,βn

(∆)− c∗n
)
−
(
w∗

j (∆)− cπ∗

)
. Using the fact

that π∗1,j = 0 for j ∈ J∗, and the triangle and Cauchy-Schwarz inequalities, for any ∆ ∈
∆ ∩

√
n
ρ

(
B − βn

)
and j ∈ J∗, we have

|rn,j,βn(∆)| ≤
∣∣Z∗

n,j,βn
− Z∗

j

∣∣+ ρ

∥∥∥∥∥σF,j
(
β̄n
)

σF,j (βn)
DPn,j

(
β̄n
)
−Dj

∥∥∥∥∥ ∥∆∥+ |c∗n − cπ∗ |

+ |η̂n,j,βn(∆)|

∥∥∥∥∥Zn,j,βn(∆) +
σPn,j

(
β̄n
)

σPn,j (βn)
DPn,j

(
β̄n
)
∆ρ

∥∥∥∥∥
=oP (1) (257)

where the first equality follows from ∥∆∥ ≤
√
d,DPn

(
β̄n
)
→ D due to DPn (βn)→ D, Assump-

tion 7, Assumption 8, and β̄n being a mean value between βn and βn +∆ρ/
√
n. We also note

that
∥∥∥Z∗

n,j,βn

∥∥∥ = OP (1), ∥DP,j(β)∥ being uniformly bounded for β ∈ B(P ) (Assumption 8.1),

and Lemma 21.

Note that when paired inequalities are merged, for each j = 1, . . . , R1 such that π∗1,j =

0 = π∗1,j+R1
we have that |µ̃j − µj | = oP (1), where µ̃j and µj were defined in (168)-(169) and

(193)-(194) respectively. By (257) and the fact that j ∈ J∗, we have

sup
∆∈∆

∣∣∣∣max
j∈J∗

(
u∗n,j,βn

(∆)− c∗n
)
−max

j∈J∗

(
w∗

j (∆)− cπ
)∣∣∣∣ ≤ sup

∆∈∆
max
j∈J∗
|rn,j,βn(∆)| = oP (1). (258)

The conclusion of the lemma then follows from (256) and (258). The result in (255) follows

from similar arguments.

Lemma 17. Let Assumptions 7, 8, 6, 10 hold. And suppose Assumption 9 or 11 hold. For any

β′n ∈ (βn + ρ/
√
n∆) ∩ B,

1. For any η > 0, there exist δ > 0 such that

sup
c≥0

P
(
{W(c) ̸= ∅} ∩

{
W−δ(c) = ∅

})
< η. (259)
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Moreover, for any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥0

P s
n

({
V I
n

(
β′n, c

)
̸= ∅
}
∩
{
V I,−δ
n

(
β′n, c

)
= ∅
})

< η, ∀n ≥ N. (260)

2. Fix c > 0. Then for any η > 0, there exists δ > 0 such that

sup
c≥c

P ({W(c) ̸= ∅} ∩ {W(c− δ) = ∅}) < η. (261)

Moreover, for any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥c

P s
n

({
V I
n

(
β′n, c

)
̸= ∅
}
∩
{
V I
n

(
β′n, c− δ

)
= ∅
})

< η, ∀n ≥ N. (262)

Proof. We first show (259). Any inequality indexed by j /∈ J∗ is satisfied with probability

approaching one by similar arguments as in (179) (both with c and with c − δ ). Hence, one

could argue for sets W(c),W−δ(c) but with j ∈ J∗. To keep the notation simple, below I argue

as if J = J∗. Let c ≥ 0 be given. Let g be a |J|+ 2d vector with entries

gj =

c− Zj , j ∈ J,

1, j = |J|+ 1, . . . , |J|+ 2d,
(263)

recalling that π∗1,j = 0 for j = |J1|+ 1, . . . , |J|. Let τ be a (|J|+ 2d) vector with entries

τj =

1, j = 1, . . . , |J1|

0, j = |J1|+ 1, . . . , |J|+ 2d.
(264)

Then we can express the sets of interest as

W(c) = {∆ : K∆ ≤ g}, (265)

W−δ(c) = {∆ : K∆ ≤ g − δτ} (266)

By Farkas’ Lemma, e.g. R. Rockafellar (1970) (Theorem 22.1), a solution to the system of

linear inequalities in (265) exists if and only if for all µ ∈ RJ+2d
+ such that µ′K = 0, one has

µ′g ≥ 0. Similarly, a solution to the system of linear inequalities in (266) exists if and only if

for all µ ∈ R|J|+2d such that µ′K = 0, one has µ′(g − δτ) ≥ 0. Define

M≡
{
µ ∈ R|J|+2d

+ : µ′K = 0
}
. (267)

Then, one may write

P
(
{W(c) ̸= ∅} ∩

{
W−δ (c) = ∅

})
=P

({
µ′g ≥ 0,∀µ ∈M

}
∩
{
µ′(g − δτ) < 0,∃µ ∈M

})
=P

({
µ′g ≥ 0,∀µ ∈M

}
∩
{
µ′g < δµ′τ,∃µ ∈M

})
. (268)
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Note that the setM is a non-stochastic polyhedral cone. By Minkowski Weyl’s theorem (see,

e.g. R. T. Rockafellar and Wets (2009) (Theorem 3.52)), there exist
{
νt ∈M, t = 1, . . . , T

}
,

with T <∞ a constant that depends only on |J| and d, such that any µ ∈M can be represented

as

µ = b

T∑
t=1

atν
t,

where b > 0 and at ≥ 0, t = 1, . . . , T,
∑T

t=1 at = 1. Hence, if µ ∈ M satisfies µ′g < δµ′τ ,

denoting νt′ the transpose of vector νt, we have

T∑
t=1

atν
t′g < δ

T∑
t=1

atν
t′τ

However, due to at ≥ 0, ∀t and νt ∈ M, this means νt′g < δνt′τ for some t ∈ {1, . . . , T}.
Furthermore, since νt ∈M, we have 0 ≤ νt′g. Therefore,

P
({
µ′g ≥ 0,∀µ ∈M

}
∩
{
µ′g < δµ′τ,∃µ ∈M

})
(269)

≤ P
(
0 ≤ νt′g < δνt′τ,∃t ∈ {1, . . . , T}

)
≤

T∑
t=1

P
(
0 ≤ νt′g < δνt′τ

)
.

Case 1. Consider first any t = 1, . . . , T such that νt assigns positive weight only to con-

straints in {|J|+ 1, . . . , |J|+ 2d}. Then

νt′g =

|J|+2d∑
j=|J|+1

νtj ,

δνt′τ = δ

|J|+2d∑
j=|J|+1

νtjτj = 0,

where the last equality follows by (264). Therefore P
(
0 ≤ νt′g < δνt′τ

)
= 0.

Case 2. Consider now any t = 1, . . . , T such that νt assigns positive weight also to constraints

in J. Recall that indices j = J2 ∪ [J2] correspond to moment equalities, each of which is written

as two moment inequalities, therefore yielding a total of 2|J2| inequalities with D[j] = −Dj for

j ∈ J2, and:

g =

c− Zj j ∈ J2,

c+ Z[j] j ∈ [J2] .
(270)

For each νt, (270) implies∑
j∈J2∪[J2]

νtjgj = c
∑

j∈J2∪[J2]

νtj +
∑
j∈J2

(
νtj − νtj+J2

)
Zj .

For each j ∈ J1 ∪ J2, define

ν̃tj ≡

{
−νtj j ∈ J1
−νtj + νt[j] j ∈ J2.

(271)
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We then let ν̃t =
(
ν̃tn,1, . . . , ν̃

t
n,|J1|+|J2|

)′
and have

νt′g =
∑

j∈J1∪J2

ν̃tjZj + c
∑
j∈J

νtj +

|J|+2d∑
j=|J|+1

νtj (272)

Case 2-a. Suppose ν̃t ̸= 0. Then, by (272), νt′g
νt′τ is a normal random variable with variance(

ν̃t′τ
)−2

ν̃t′Ων̃t. By Assumption 9 and Assumption 11, there exists a constant ω > 0 such that

the smallest eigenvalue of Ω is bounded from below by ω for all β′n. Hence, letting ∥ · ∥p denote

the p-norm in R|J|+2d+2, we have

ν̃ ′tΩν̃t

(ν̃t′τ)2
≥

ω
∥∥ν̃t∥∥2

2

(|J|+ 2d)2 ∥ν̃t∥22
≥ ω

(|J|+ 2d)2
.

Therefore, the variance of the normal random variable in (269) is uniformly bounded away from

0, which in turn allows one to find δ > 0 such that P
(
0 ≤ νtg

νtτ < δ
)
≤ η/T .

Case 2-b. Next, consider the case ν̃t = 0. Because we are in the case that νt assigns positive

weight also to constraints in J, this must be because νtj = 0 for all j ∈ J1 and νtj = νt[j] for all

j ∈ J2, while νtj ̸= 0 for some j ∈ J2. Then we have
∑

j∈J ν
t
jg ≥ 0, and

∑
j∈J ν

t
jτj = 0 because

τj = 0 for each j ∈ J2 ∪ [J2]. Hence, the argument for the case that νt assigns positive weight

only to constraints in {|J| + 1, . . . , |J| + 2d} applies and again P
(
0 ≤ νt′g < δνt′τ

)
= 0. This

establishes equation (259).

As for (260), observe that the bootstrap distribution is conditional onX1, . . . , Xn. Therefore,

the matrix K̂n, defined as the matrix in equation (227) but with D̂n replacingDP , can be treated

as nonstochastic. This implies that the set M̂n, defined as the set in equation (267) but with

K̂n replacing K, can be treated as nonstochastic as well.

By an application of Lemma D.2.8 in Bugni et al. (2015) together with Lemma H.17 (through

an argument similar to that following equation (242), Zs
n

d→ Z in l∞(Θ) uniformly in P con-

ditional on {X1, . . . , Xn}, and by Assumption 7 D̂n (β
′
n)

Pn→ D, for almost all sample paths.

Set

gPn,j

(
β′n
)
=

c− ϕ∗j (ξn,j (β′n))− Zs
n,β′

n,j
, j ∈ J,

1, j = |J|+ 1, . . . , |J|+ 2d,

and note that
∣∣∣ϕ∗j (ξn,j (β′n))∣∣∣ < η for all j ∈ J∗, and Zs

n,β′
n,j
| {Xi}∞i=1

d→ N(0,Ω). Then one can

mimic the argument following (263) to conclude (260).

The results in (261)-(262) follow by similar arguments, with proper redefinition of τ in

equation (264).

Lemma 18. Let Assumptions 7, 8, 6, 10 hold. And suppose Assumption 9 or 11 hold. Let

C̃ collect all size d subsets C of {1, . . . , |J| + 2d} ordered lexicographically by their smallest,

then second smallest, etc. elements. Let the random variable C equal the first element of

C̃ s.t. detKC ̸= 0 and ∆C =
(
KC
)−1

gC ∈ W∗,−δ(0) if such an element exists; else, let

C = {|J|+1, . . . , |J|+d} and ∆C = 1d, and K, g and W∗,−δ are as defined in Lemma 14. Then,

117



for any η > 0, there exist 0 < εη <∞ and N ∈ N s.t. n ≥ N implies

P
(
W∗(−δ) ̸= ∅,

∣∣detKC∣∣ ≤ εη) ≤ η (273)

Proof. (273) can be bounded as follows:

P
(
W∗,−δ(0) ̸= ∅,

∣∣detKC∣∣ ≤ εη) ≤ P (∃C ∈ C̃ : ∆C ∈∆,
∣∣detKC

∣∣ ≤ εη)
≤

∑
C∈C̃:|detKC |≤εη

P
(
∆C ∈∆

)
≤

∑
C∈C̃:|αC |≤ε

2/d
η

P
(
∆C ∈∆

)

where αC denote the smallest eigenvalue of KCKC′. Here, the first inequality holds because

W∗,−δ ⊆∆ and so the event in the first probability implies the event in the next one; the second

inequality is Boolean algebra; the last inequality follows because
∣∣detKC

∣∣ ≥ ∣∣αC
∣∣d/2. Noting

that C̃ has

(
|J|+ 2d

d

)
elements, it suffices to show that

∣∣αC
∣∣ ≤ ε2/dη =⇒ P

(
∆C ∈∆

)
≤ η̄ ≡ η(

|J|+2d
d

) .
Thus, fix C ∈ C̃. Let qC denote the eigenvector associated with αC and recall that because

KCKC′ is symmetric,
∥∥qC∥∥ = 1. Thus the claim is equivalent to:

∣∣qC′KCKC′qC
∣∣ ≤ ε2/dη =⇒ P

((
KC
)−1

gC ∈∆
)
≤ η̄.

Now, if
∣∣qC′KCKC′qC

∣∣ ≤ ε2/dη and
(
KC
)−1

gC ∈∆, then the Cauchy-Schwarz inequality yields

∣∣qC′gC
∣∣ = ∣∣∣qC′KC

(
KC
)−1

gC
∣∣∣ < √dε1/dη ,

hence

P
((
KC
)−1

gC ∈∆
)
≤ P

(∣∣qC′gC
∣∣ < √dε1/dη

)
.

If qC assigns non-zero weight only to non-stochastic constraints, the result follows immedi-

ately. If qC assigns non-zero weight also to stochastic constraints, Assumption 9 (or 11) and

Assumption 12 yield

eig(Ω̃) ≥ ω

=⇒ VarP

(
qC

′
gC
)
≥ ω

=⇒ P
(∣∣∣qC′

gC
∣∣∣ < √dε1/dη

)
= P

(
−
√
dε1/dη < qC

′
gC <

√
dε1/dη

)
<

2
√
dε

1/d
η√

2ωπ
, (274)
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where the result in (274) uses that the density of a normal r.v. is maximized at the expected

value. The result follows by choosing εη =
(
η̄
√
2ωπ

2
√
d

)d
.

Lemma 19. Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11 hold. If

|J1| ≥ 1, |J2| ≥ d, or if |J2| > d, then ∃c > 0 s.t.

lim inf
n→∞

inf
P∈P

inf
β∈B(P )

P
(
cIn(β) ≥ c

)
= 1.

Proof. I first consider the case where J1 ̸= ∅ and |J2| ≥ d. Fix any c ≥ 0 and restrict attention

to constraints {|J1|+ 1, . . . , |J1|+ d, |J1|+ |J2|+ 1, . . . , |J1|+ |J2|+ d}, i.e. the inequalities that
jointly correspond to the first d equalities. We separately analyze the case when (i) the cor-

responding estimated gradients
{
D̂n,j(β) : j = |J1|+ 1, . . . , |J1|+ d

}
are linearly independent

and (ii) they are not. If
{
D̂n,j(β) : j = |J1|+ 1, . . . , |J1|+ d

}
converge to linearly independent

limits, then only the former case occurs infinitely often; else, both may occur infinitely often,

and we conduct the argument along two separate subsequences if necessary.

For the remainder of this proof, because the sequence {βn} is fixed and plays no direct

role in the proof, we suppress dependence of D̂n,j(β) and Zs
n,j(β) on β. Also, if C is an index

set picking certain constraints, then D̂C
n is the matrix collecting the corresponding estimated

gradients, and similarly for Zs,C
n .

Suppose now case (i), then there exists an index set

C̄ ⊂ {|J1|+ 1, . . . , |J1|+ d, |J1|+ |J2|+ 1, . . . , |J1|+ |J2|+ d}

picking one direction of each constraint s.t. D̂n,1 is a positive linear combination of the rows

of D̂C
n . (This choice ensures that a Karush-Kuhn-Tucker condition holds, justifying the step

from (275) to (277) below.) Then the coverage probability P s
(
V I
n (β, c) ̸= ∅

)
is asymptotically

bounded above by

P s
({

∆ ∈ ρ∆n : D̂n,j∆ ≤ c− Zs
n,j , j ∈ J∗

}
̸= ∅
)

≤P s
({

∆ ∈ Rd : D̂n,j∆ ≤ c− Zs
n,j , j ∈ C̄

}
̸= ∅
)

(275)

=P s

(
D̂′

n,1

(
D̂C̄

n

)−1 (
c1d − Zs,C̄

n

)
≤ c− Zb

n,1

)
(276)

=P s

((
1− D̂′

n,1

(
D̂C̄

n

)−1
1d

)
c ≥ Zs

n,1 − cD̂′
n,1

(
D̂C̄

n

)−1
Zs,C̄
n

)

=P s


(
1− D̂′

n,1

(
D̂C̄

n

)−1
1d

)
c√

ΩC
P

≥
Zs
n,1 − cD̂′

n,1

(
D̂C̄

n

)−1
Zs,C̄
n√

ΩC
P

 (277)

≤Φ


(
1 +

∣∣∣∣D̂′
n,1

(
D̂C̄

n

)−1
1d

∣∣∣∣) c√
ΩC
P

+ op(1) (278)

Here, (275) removes constraints and hence enlarges the feasible set; (276) solves in closed form;
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and (278) uses that by Assumption 9 or 11.

In case (ii), there exists an index set

C̄ ⊂ {|J1|+ 2, . . . , |J1|+ d+ 1, |J1|+ |J2|+ 2, . . . , |J1|+ |J2|+ d+ 1}

collecting d or fewer linearly independent constraints s.t. D̂n,|J1|+1 is a positive linear combina-

tion of the rows of D̂C̄
P . (Note that C̄ cannot contain |J1|+ 1 or |J1|+ |J2|+ 1.) One can then

write

P s
({

∆ ∈ ρ∆n : D̂n,j∆ ≤ c− Zs
n,j , j ∈ J∗

}
̸= ∅
)

(279)

≤P s
(
∃∆ : D̂n,j∆ ≤ c− Zs

n,j , j ∈ C̄ ∪ {|J1|+ |J2|+ 1}
)

≤P s

(
sup
∆

{
D̂n,|J1|+1∆ : D̂n,j∆ ≤ c− Zs

n,j , j ∈ C̄
}

≥ inf
∆

{
D̂n,|J1|+1∆ : D̂n,|J1|+|J2|+1∆ ≤ c− Zs

n,|J1|+|J2|+1

})
(280)

=P s

(
D̂n,|J1|+1D̂

C̄′
n

(
D̂C̄

n D̂
C̄′
n

)−1 (
c1d̄ − Zs,C̄

n

)
≥ −c+ Zs

n,|J1|+|J2|+1

)
(281)

Here, the reasoning from (279) to (280) holds because we evaluate the probability of increas-

ingly larger events; in particular, if the event in (280) fails, then the constraint sets corre-

sponding to the sup and inf can be separated by a hyperplane with gradient D̂n,|J1|+1 and so

cannot intersect. The last step solves the optimization problems in closed form, using (for

the sup) that a KarushKuhn-Tucker condition again holds by construction and (for the inf)

that D̂n,|J1|+|J2|+1 = −D̂n,|J1|+1. Expression (281) resembles (277), and the argument can be

concluded in analogy to Case (ii).

Lemma 20. Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11 hold. Sup-

pose that both π1,j and π1,j+R1 are finite. Let (Pn, βn) be the sequence satisfying the conditions

of Lemma 15. Then for any β′n ∈ (βn + ρ/
√
n∆) ∩ B,

1. σ2Pn,j
(β′n) /σ

2
Pn,[j]

(β′n)→ 1 for j ∈ J2.

2.
ΣPn,j,[j]√
ΣPn,jΣPn,[j]

→ −1 for j ∈ J2.

3.
∣∣Zn,j (β

′
n) + Zn,[j] (β

′
n)
∣∣ Pn→ 0, and

∣∣∣Zb
n,j (β

′
n) + Zb

n,[j] (β
′
n)
∣∣∣ P ∗
→ 0 for almost all {Xi}∞i=1.

4.
∥∥DPn,[j] (β

′
n) +DPn,j (β

′
n)
∥∥→ 0.

Proof. By Lemma 23, for each j, limn→∞ κ−1
n

√
nEPn [mj(Xi;β

′
n,φPn )]

σPn,j(β′
n)

= π1,j , and hence the condi-

tion that π1,j , π1,[j] are finite is inherited by the limit of the corresponding sequences
√
nEPn [mj(Xi;β

′
n,φPn )]

κnσPn,j
(β′

n)

and
√
nEPn [m[j](Xi;β

′
n,φPn )]

κnσPn,[j](β
′
n)

.

(1) π1,j being finite implies that EPnmj (Xi;β
′
n, φPn) → 0. Thus by Assumption 11,

EPn (tj (Xi, β
′
n))→ 0. We then have, using Assumption 11 again,

Var
(
tj
(
Xi, β

′
n

))
=

∫
tj
(
x, β′n

)2
dPn(x)− EPn

[
tj
(
Xi, β

′
n

)]2
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≤M
∫
tj
(
x, β′n

)
dPn(x)− EPn

[
tj
(
Xi, β

′
n

)]2 → 0. (282)

Hence,

ΩPn,[j]

(
β′n, φPn

)
− ΩPn,j

(
β′n, φPn

)
=varPn

(
tj
(
Xi;β

′
n, φPn

))
+ 2 covPn

(
mj

(
Xi;β

′
n, φPn

)
, tj
(
Xi;β

′
n, φPn

))
≤ varPn

(
tj
(
Xi, β

′
n

))
+ 2

(
varPn

(
tj
(
Xi, β

′
n

)))1/2 (
varPn

(
mj

(
Xi;β

′
n, φPn

)))1/2 → 0, (283)

And similarly

ΩPn,[j],φ

(
β′n, φPn

)
− ΩPn,j,φ

(
β′n, φPn

)
= cov

(
tj
(
Xi;β

′
n, φPn

)
,mφ(Xi)

)
≤
√

varPn (tj (Xi, β′n)) varPn (mφ(Xi))→ 0.

Lastly, we show that

∇φE
[
mj

(
Xi;β

′
n, φPn

)]
+∇φE

[
m[j]

(
Xi;β

′
n, φPn

)]
= −∇φE

[
tj(Xi;β

′
n, φPn)

]
→ 0.

Let

qn = ∇φE
[
tj(Xi;β

′
n, φPn)

]
and by contradiction, assume that qn → q ̸= 0. Let rn = −qn

∥qn∥
κ2
n√
n
, and then

EPn

[
tj
(
Xi;β

′
n, φPn + rn

)]
=EPn

[
tj
(
Xi;β

′
n, φPn

)]
+∇φEPn

[
tj
(
Xi;β

′
n, φPn

)]
rn

+
(
∇φEPn

[
tj
(
Xi;β

′
n, φ̄

)]
−∇φEPn

[
tj
(
Xi;β

′
n, φPn

)])
rn

=O(
κn√
n
)− ∥qn∥

κ2n√
n
+O

(
κ4n
n

)
Therefore, we will have

EPn

[
tj
(
Xi;β

′
n, φPn + rn

)]
< 0

for n large enough, which contradicts Assumption 11 that tj (Xi;β
′
n, φPn + rn) ≥ 0.

Then by

σ2Pn,j

(
β′n
)
=
[
1 ∇φ′E [mj (Xi;β

′
n, φPn)]

] [ ΩPn,j (β
′
n) ΩPn,j,φ (β′n)

ΩPn,j,φ (β′n) ΩPnφ (β′n)

] [
1 ∇φ′E [mj (Xi;β

′
n, φPn)]

]′
,

we have

σ2Pn,j

(
β′n, φPn

)
/σ2Pn,j+R1

(
β′n, φPn

)
→ 1.

(2) Note that

ΣPn,j,j+R1√
ΣPn,jΣPn,j+R1

=
GPn,j(β

′
n, φPn)ΩPn(β

′
n, φPn)G

′
Pn,j+R1√

GPn,j(β
′
n, φPn)ΩPn(β

′
n, φPn)G

′
Pn,j

√
GPn,j+R1(β

′
n, φPn)ΩPn(β

′
n, φPn)G

′
Pn,j+R1

→ −1,
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where the result follows from (282) and (283).

(3) Note that, for j ∈ J2,

Zn,j

(
β′n, φPn

)
+ Zn,[j]

(
β′n, φPn

)
=
GjGn(β

′
n, φPn)

σPn,j(β
′
n)

−
σPn,j(β

′
n)

σPn,[j](β
′
n)

G[j]Gn(β
′
n, φPn)

σPn,j(β
′
n)

+
(Ĝj −Gj)Gn(β

′
n, φPn)

σPn,j(β
′
n)

−
(Ĝ[j] −G[j])Gn(β

′
n, φPn)

σPn,[j] (β
′
n)

=op(1)

By Lemma H.15 in Kaido et al. (2019),
{
Gb

n

}
converges in law to the same limit as {Gn} for

almost all sample paths {Xi}∞i=1. This then implies the second half of Claim 3.

(4) This is similar to (2).

Lemma 21. Assumptions 7, 8, 6, 10 hold. And suppose Assumption 9 or 11 hold. Then,

1. for each j = 1, ..., J1 + J2, ℓ, u,

inf
P∈P

P

(
sup

(β,∆)∈B×∆

|η̂n,j,β(∆)| → 0

)
.

2. Let (Pn, βn) be a sequence such that Pn ∈ P, βn ∈ B for all n, and κ−1
n

√
nγ1,Pn,j (βn) →

π1j ∈ R[−∞]. Then, for any η > 0, there exists N ∈ N such that

Pn

(
max
j∈J∗

∣∣∣∣∣σPn,j (βn)

σ̂Mn,j (βn)
− 1

∣∣∣∣∣ > η

)
< η

for all n ≥ N .

Proof. (1) First, for any ϵ > 0 and for any j = 1, ..., J1 + J2, by Assumption 10, 12, Lemma

D.2.2 in Bugni et al. (2015) and the argument in Lemma H.10(i) in KMS19 , there is n1 such

that

sup
P∈P

P

(
sup
m≥n1

sup
(β,φ)∈B×Φ

∥∥∥Ω̂(β, φ)− ΩP (β, φ)
∥∥∥ ≤ ϵ)→ 0.

Next, note that by Assumption 10,

sup
P∈P

P

(
sup
m≥n
∥φ̂− φP ∥ ≤ ϵ

)
→ 0.

Therefore, we have

sup
P∈P

P

(
sup
m≥n

sup
β∈B

∥∥∥Ω̂(β)− ΩP (β)
∥∥∥ > ϵ

)

≤ sup
P∈P

P

(
sup
m≥n

sup
β∈B

∥∥∥Ω̂(β, φ̂)− ΩP (β, φ̂)
∥∥∥ > ϵ

2

)
+ sup

P∈P
P

(
sup
m≥n

sup
β∈B
∥ΩP (β, φ̂)− ΩP (β, φP )∥ >

ϵ

2

)

≤ sup
P∈P

P

(
sup
m≥n

sup
(β,φ)∈B×Φ

∥∥∥Ω̂(β, φ)− ΩP (β, φ)
∥∥∥ > ϵ

2

)
+ sup

P∈P
P

(
sup
m≥n

M ∥φ̂− φP ∥ >
ϵ

2

)
→ 0.
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Together with Assumption 2 that Ĝ(β) − GP (β) converges almost sure to 0, and Assumption

10.3, Assumption 7 that ΣP and GP are bounded, we can get

inf
P∈P

P

(
sup
m≥n

sup
(β,φ)∈B×Φ

∥∥∥Σ̂(β)− ΣP (β)
∥∥∥ ≤ ϵ)→ 1.

And since

η̂n,j,β(∆) =
σP,j(β)

σ̂n,j(β + ∆ρ√
n
)
− 1

=
σP,j(β + ∆ρ√

n
, φP )

σ̂n,j(β + ∆ρ√
n
, φ̂)

σP,j(β, φP )

σP,j(β + ∆ρ√
n
, φP )

− 1

= η1,n,j,β(∆)η2,n,j,β(∆) + η1,n,j,β(∆) + η2,n,j,β(∆)

where

η1,n,j,β(∆) =
σP,j(β + ∆ρ√

n
, φP )

σ̂n,j(β + ∆ρ√
n
, φ̂)

− 1,

η2,n,j,β(∆) =
σP,j(β, φP )

σP,j(β + ∆ρ√
n
, φP )

− 1.

We can conclude that

inf
P∈P

P

(
sup
m≥n

sup
(β,φ)∈B×Φ

|η̂n,j,β(∆)− 1| ≤ ϵ

)
→ 1.

Finally, note that for any ϵ > 0,

1 = lim
n→∞

inf
P∈P

P

(
sup
m≥n

sup
(β,φ)∈B×Φ

|η̂n,j,β(∆)| ≤ ϵ

)

≤ inf
P∈P

lim
n→∞

P

 ⋂
m≥n

{
sup

(β,φ)∈B×Φ

|η̂n,j,β(∆)| ≤ ϵ

}
= inf

P∈P
P

 lim
n→∞

⋂
m≥n

{
sup

(β,φ)∈B×Φ

|η̂n,j,β(∆)| ≤ ϵ

}
= inf

P∈P
P

(
sup

(β,φ)∈B×Φ

|η̂n,j,β(∆)| ≤ ϵ, for all but finite n

)
,

where the second equality is due to the continuity of probability with respect to monotone

sequences. Therefore, the first conclusion of the lemma follows.
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(2) I first give the limit of µ̂n,j . Recall the definitions of µ̂n,[j] and µ̂n,j :

µ̂n,[j] (β) = min

max

0,

m̄n,j(β,φ̂)
σ̂n,j(β)

m̄n,[j](β,φ̂)

σ̂n,[j](β)
+

m̄n,j(β,φ̂)
σ̂n,j(β)

 , 1

 ,

µ̂n,j (β) = 1− µ̂n,[j] (β) .

Note that

sup
β′
n∈βn+ρ/

√
n∆

∣∣∣∣κ−1
n

√
nm̄n,j (β

′
n, φ̂)

σ̂n,j (β′n)
− κ−1

n

√
nEPn [mj (Xi;β

′
n, φPn)]

σPn,j (β
′
n)

∣∣∣∣
≤ sup

β′
n∈βn+ρ/

√
n∆

∣∣∣∣ Gn(β
′
n, φ̂)

κnσ̂n,j (β′n)
+

√
n

κn
γ1,P,j

(
β′n
)
η̂n,j,β′

n
+
∇φEPn [mj (Xi;β

′
n, φ̄)]

√
n (φ̂− φ)

κnσ̂n,j (β′n)

∣∣∣∣
=oP (1),

where the last equality follows from supβ∈B |Gn(β
′
n, φ̂)| = OP(1) due to asymptotic tightness

of {Gn} (uniformly in P ) by Lemma D.1 in Bugni et al. (2015), Theorem 3.6.1 and Lemma

1.3.8 in Van Der Vaart and Wellner (1996), and supβ∈B |η̂n,j,β(∆)| = oP (1) by part (i) of this

Lemma. Hence,

µ̂n,j (βn)
p→ 1−min

{
max

(
0,

π1,j
π1,[j] + π1,j

)
, 1

}
,

unless π1,[j] + π1,j = 0 (this case is considered later). This implies that if π1,j ∈ (−∞, 0] and
π1,[j] = −∞, one has

µ̂n,j (βn)
p→ 1.

Now, one may write

σPn,j (βn)

σ̂Mn,j (βn)
− 1 =

σPn,j (βn)

σ̂n,j (βn)

(
σ̂n,j (βn)

σ̂Mn,j (βn)
− 1

)
+

(
σPn,j (βn)

σ̂n,j (βn)
− 1

)
(284)

=OPn(1)

(
σ̂n,j (βn, φ̂)

σ̂Mn,j (βn, φ̂)
− 1

)
+ op(1),

where the second equality follows from the first conclusion of the lemma. Hence, for the second

conclusion of the lemma, it suffices to show σ̂n,j (βn) /σ̂
M
n,j (βn) − 1 = op(1). For this, consider

two cases.

Case 1. j ∈ (J2 ∪ [J2]) ∩ J∗ and [j] /∈ J∗. Then, π∗1,j = 0 and π∗1,[j] = −∞ and

σ̂n,j (βn)

σ̂Mn,j (βn)
− 1 =

σ̂n,j (βn)− σ̂Mn,j (βn)
σ̂Mn,j (βn)

(285)

=
(1− µ̂n,j (βn))OPn (σ̂n,j (βn))

(1 + oPn(1)) σ̂n,j (βn) + (1− µ̂n,j (βn))OPn (σ̂n,j (βn))
= op(1),

where we used σ̂−1
n,j (βn) = Op(1) by Assumption 9 or 11 and part (i) of the lemma. By (284)

and (285), σPn,j (βn) /σ̂
M
n,j (βn)− 1 = op(1).

Case 2. j ∈ J∗ and [j] ∈ J∗. Then, π∗1,j = 0 and π∗1,[j] = 0. In this case, µ̂n,j (βn) ∈ [0, 1] for
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all n and by Lemma 20 (1), ∣∣∣∣ σPn,j (βn)

σPn,[j] (βn)
− 1

∣∣∣∣ = op(1), (286)

for j = J2 ∪ [J2]. Therefore,

σPn,j (βn)

σ̂Mn,j (βn)
− 1 =

σPn,j (βn)− σ̂Mn,j (βn)
σ̂Mn,j (βn)

=
[µ̂n,j (βn) + (1− µ̂n,j (βn))]σPn,j (βn)−

[
µ̂n,j (βn) σ̂n,j (βn) + (1− µ̂n,j (βn)) σ̂n,[j] (βn)

]
σ̂Mn,j (βn)

=
µ̂n,j (βn) [σPn,j (βn)− σ̂n,j (βn)]

σ̂Mn,j (βn)
+

(1− µ̂n,j (βn))
[
σPn,[j] (βn)− σ̂n,[j] (βn) + oPn(1)

]
σ̂Mn,j (βn)

, (287)

where the second equality follows from the definition of σ̂Mn,j (βn), and the third equality follows

from (286) and σPn,[j] bounded away from 0 due to Assumption 9 or 11. Note that

µ̂n,j (βn) [σPn,j (βn)− σ̂n,j (βn)]
σ̂Mn,j (βn)

= µ̂n,j (βn)
σ̂n,j (βn)

σ̂Mn,j (βn)

(
σPn,j (βn)

σ̂n,j (βn)
− 1

)
= oPn(1),

where the second equality follows from the first conclusion of the lemma. Similarly,

(1− µ̂n,j (βn))
[
σPn,[j] (βn)− σ̂n,[j] (βn) + oPn(1)

]
σ̂Mn,j (βn)

(288)

= (1− µ̂n,j (βn))
σ̂n,[j] (βn)

σ̂Mn,j (βn)

(
σPn,[j] (βn)

σ̂n,[j] (βn)
− 1 + oPn(1)

)
= oPn(1).

By (287)-(288), it follows that σPn,j (βn) /σ̂
M
n,j (βn)− 1 = oPn(1).

Lemma 22. Znβ(∆)
d−→ Z.

Lemma 23. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11

hold. Given a sequence

{Qn, βn} ∈ {(P, β) : P ∈ P, β ∈ B(P )}

such that limn→∞ κ−1
n

√
nγ1,Qn,j (βn) exists for each j = 0, 1, . . . J , let χj ({Qn, βn}) be a function

of the sequence {Qn, βn} defined as

χj ({Qn, βn}) =

0, if limn→∞ κ−1
n

√
nγ1,Qn,j (βn) = 0

−∞, if limn→∞ κ−1
n

√
nγ1,Qn,j (βn) < 0

(289)

Then for any β′n ∈ βn + ρ√
n
[−1, 1]d for all n, one has:

1. κ−1
n

√
nγ1,Qn,j (βn)− κ−1

n

√
nγ1,Qn,j (β

′
n) = o(1);

2. χ ({Qn, βn}) = χ ({Qn, β
′
n}) = π∗1,j;

3.
√
nm̄n,j(β

′
n,φ̂)

κnσ̂n,j(β′
n)
−

√
nEQn [mj(Xi,β

′
n,φQn)]

κnσPn,j(β′
n)

= oP (1).
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Proof. For (i), the mean value theorem yields

sup
P∈P

sup
β∈B(P ),β̃∈β+ ρ√

n
∆

∣∣∣∣∣∣
√
nEP [mj(X;β, φP )]

κnσP,j(β)
−

√
nEP

[
mj(X; β̃, φP )

]
κnσP,j(β̃)

∣∣∣∣∣∣
≤ sup

P∈P
sup

β∈B(P ),β̃∈β+ ρ√
n
∆

∣∣∣∣∣∣
√
n
(
EP [mj(X;β, φP )]− EP

[
mj(X; β̃, φP )

])
κnσP,j(β)

∣∣∣∣∣∣
+ sup

P∈P
sup

β∈B(P ),β̃∈β+ ρ√
n
∆

∣∣∣∣∣∣E
[
mj(X; β̃, φP )

] √n(σP,j(β)− σP,j(β̃))
κnσP,j(β)σP,j(β̃)

∣∣∣∣∣∣
≤ sup

P∈P
sup

β∈B(P ),β̃∈β+ ρ√
n
∆

∥∥DP,j(β̄)
∥∥√n ∥∥∥β̃ − β∥∥∥
κn

+ sup
P∈P

sup
β∈B(P ),β̃∈β+ ρ√

n
∆

M2√n
∥∥∥β̃ − β∥∥∥

κnσP,j(β)σP,j(β̃)

=o(1),

where β̄ represents a mean value that lies componentwise between β and β̃ and where we used

the fact that supP∈P supβ∈B(P ) ∥DP,j(β)∥ ≤ M̄ ,
√
n
∥∥∥β̃ − β∥∥∥ ≤ ρ and σP,j(β) ∈ [ε, 1

ε ]. And it

is easy to show this for γ0 using Chain rule and similar arguments.

Result (ii) then follows immediately from (289).

For (iii), note that by (156), we have

sup
β̃∈βn+ρ/

√
n∆

∣∣∣∣∣∣κ−1
n

√
nm̄n,j

(
β̃, φ̂

)
σ̂n,j

(
β̃
) − κ−1

n

√
nEQn

[
mj

(
Xi, β̃, φQn

)]
σQn,j

(
β̃
)

∣∣∣∣∣∣
≤ sup

β̃∈βn+ρ/
√
n∆

√
nγ1,Pn,j (βn)

κn
η̂n,j,βn(∆)

+ (1 + η̂n,j,βn(∆))

(
Zn,j,βn

κn
+
σQn,j

(
β̄n
)

σQn,j (βn)

DPn,j

(
β̄n
)
∆ρ

κn

)
=oP (1),

where the last equality follows from supβ∈β |Zn,β| = OP (1) due to asymptotic tightness of {Zn}
(uniformly in P ) by Lemma D.1 in Bugni et al. (2015), Theorem 3.6.1 and Lemma 1.3.8 in

Van Der Vaart and Wellner (1996), and supβ∈β |ηn,j(β)| = oP (1) by Lemma 21(i).

126


	1 Introduction
	2 Setup and Examples
	2.1 Setup
	2.2 Examples

	3 Inference with Finite B
	3.1 The Test Statistic
	3.2 Conditional Critical Value
	3.3 The Modified Conditional Critical Value
	3.4 Size and Power Properties

	4 Inference with Infinite B
	4.1 Notation
	4.2 The Confidence Interval
	4.3 Asymptotic Results

	5 Simulation
	5.1 When B is Finite
	5.2 When B is Infinite

	6 Empirical Illustration
	6.1 Sensitivity Analysis for Effects of the Minimum Wage
	6.2 Counterfactual Analysis for Exporter's Information Set

	7 Conclusion
	A Additional Results for Finite B
	A.1 Implementation Details
	A.2 More Simulation Results
	A.3 Potentially Non Connected Union Bounds
	A.4 Violation of Assumption 4
	A.5 Union Bounds in rambachanmore2023

	B Additional Results for Infinite B
	B.1 A Modified E-A-M Algorithm based on kaidoconfidence2019
	B.2 Simulation Details
	B.3 Empirical Details with dicksteinwhat2018

	C Proofs for Section 3
	C.1 Notation
	C.2 Proofs for Theorems and Propositions
	C.3 Auxiliary Lemmas

	D Proof for Section 4
	D.1 Notation
	D.2 Additional Assumptions
	D.3 Details of the Inference Procedure
	D.4 Proof of Theorem 1
	D.5 Lemmas


