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Abstract

A union bound is a union of multiple bounds. Union bounds occur in a wide
variety of empirical settings, from relaxations of the difference-in-differences parallel
trends assumption to counterfactual analysis with partially identified structural
parameters. In this paper, I provide the first general and systematic study of
inference on these kinds of bounds. When the union is taken over a finite set,
I propose a confidence interval based on modified conditional inference. I show
that it improves upon existing methods in a large set of data generating processes.
When the union is taken over an infinite set, I consider the set defined by moment
inequalities, as is common in practice. I then propose a calibrated projection based
inference procedure that generalizes results from the moment inequality subvector
inference literature and is computationally simple. Finally, the new procedures
give statistically significant results while the pre-existing alternatives do not in two
empirical applications, the sensitivity analysis in Dustmann, Lindner, Schonberg,
Umkehrer, and Vom Berge (2022) and the counterfactual analysis in Dickstein and
Morales (2018).
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1 Introduction

This paper studies inference for a target object partially identified by the union of a set of
bounds, namely, a union bound, and provides new procedures that significantly improve
upon the existing alternatives. Union bounds commonly arise in empirical work. For

example:

1. Assessment of the importance of the parallel trends assumption in difference-in-
differences (DiD) analyses. Recent papers such as Manski and Pepper (2018) and
Rambachan and Roth (2023) study the relaxation of the classical parallel trends
assumption within a DiD framework. One of their approaches is to assume that
the violation of parallel trends in a post-policy period is bounded above by the
maximum violation in the pre-policy periods. In this case, the identified set for
the average treatment effect on the treated (ATT) can be characterized as a union
bound, where each bound is formed by the DiD estimand adding and subtracting

the violation of a pre-policy year, and the set is all pre-policy periods.

2. Counterfactual analysis in structural models. Dickstein and Morales (2018) study
how the information set processed by exporters affects their decisions. One of
the counterfactuals of interest is the change in the number of exporters with a
change in their information set or fixed cost. The structural parameter satisfies a
set of moment inequalities, and the counterfactual outcome may only be partially
identified even if the structural parameter is known. Consequently, the identified
set of the counterfactual outcome is a union bound, where the set contains all
the structural parameters that satisfy the moment inequality restrictions, and each
bound is the identified set of the counterfactual outcome given a potential value of

the structural parameter.

I revisit these two applications in detail for empirical illustration. I also discuss applica-
tions to regression discontinuity designs, bunching strategies to identify the elasticity of
taxable income, marginal treatment effects, and misspecification in instrumental variable
models in Section 2.

In this paper, I provide the first general and systematic study of inference on union
bounds. I consider two categories of union bound inference: (i) the set is finite as in the
DiD example, and (ii) the set is infinite as in the counterfactual example. I study the
inference procedures for the target object in both cases.

In the first case when the set is finite, the main difficulty for inference is that the
endpoints of a union bound are non-smooth functions of each single bound. Hirano
and Porter (2012) show that there is no local asymptotic quantile unbiased estimator.

Moreover, Fang and Santos (2019) show that an empirical bootstrap procedure, in the



terminology of Horowitz (2019), is not uniformly valid. Similar difficulties appear in in-
ference for moment inequalities and directionally differentiable functions, but the existing
methods do not apply to union bounds because of the different restrictions on the null
parameter space. So far there are two uniformly valid methods. The first one is a simple
confidence interval (CI), which is the union of CIs for each bound. This method can be
overly conservative, especially when the bounds are close to each other. The second one
is the adjusted bootstrap procedure proposed in Ye, Keele, Hasegawa, and Small (2023).
This method involves a subsample so the CI converges to the identified set at a rate
slower than /n, resulting in trivial power for y/n local alternatives. Rambachan and
Roth (2023) propose an inference procedure for their sensitivity analysis in DiD. How-
ever, the inference procedure relies on the specific structure of DiD and does not apply
to general union bound settings.

In Section 3, I propose a modified conditional CI. Loosely speaking, I construct a
conditional critical value exploiting the distribution of the maximum estimated upper
bound (resp. the minimum estimated lower bound) conditional on the second largest
estimated upper bound (resp. the second smallest estimated lower bound). In this way,
the conditional critical value is data-adaptive and sensitive to the binding bounds, which
leads to a shorter CI when the bounds are relatively close to each other. However, the
conditional critical value is not uniformly valid, and for that reason, I propose a novel
modification that truncates the conditional critical value from below to guarantee uniform
coverage. The modified conditional CI converges to the identified CI at a rate of \/n,
and thus has material power improvement upon Ye et al. (2023). I also show that under
a large set of data generating processes (DGPs), the modified conditional CI is shorter
than the simple CI with probability approaching one.

In Section 5, I conduct extensive simulations based on the DiD settings in Rambachan
and Roth (2023) and compare the performance of my modified conditional CI to the
simple CI, the adjusted bootstrap in Ye et al. (2023) and the hybrid CI in Rambachan
and Roth (2023). The length of the median modified conditional CI is the smallest in

' TIn terms of

most simulation designs and is close to being the smallest in all designs.
the length of the median CI, net of median point estimates of the bound, the modified
conditional CI results in a decrease of up to 43% relative to alternative methods.

In the second case when the set is infinite, I consider the case when the set, e.g. the
identified set of the structural parameter, is formed by moment inequalities, as is often the
case in practice. I assume that each bound, e.g. the bound of the counterfactual given a
potential true structural parameter, is a function of data moments. Among the empirical
applications in this setup, it is common to estimate point-identified nuisance parameters
separately from the structural parameters to improve computational efficiency. Thus I

allow the set and the bounds to include plug-in estimands. One of the current practices

!The median CI is the median of the endpoints of the 1 — o CI across simulated samples.



for counterfactual inference is to first construct a valid confidence set for the structural
parameter (the set), and then take a union of the estimated counterfactuals (the bounds)
over this confidence set, treating the plug-in estimator and the counterfactual as known.
This simple projection CI can be wide since it projects a confidence set of a higher
dimensional structural parameter. Moreover, it may not have proper coverage because it
does not adjust for sampling uncertainty in the plug-in estimator and the counterfactual.

In Section 4, I propose a calibrated projection based procedure. The calibrated Cl is a
union of the single calibrated CI of each bound over the calibrated confidence set for the set
of structural parameters. The calibration means that the critical value used to construct
the single CI and the confidence set are chosen so that the coverage rate of the target
object, rather than the structural parameter, is above the nominal value. Calculation of
the critical value is done by repeatedly solving a set of linear programs, which makes it
computationally simple. This method uses insights from subvector inference in Kaido,
Molinari, and Stoye (2019), where a subvector is a known function, usually a single
element, of the structural parameter. Different from the subvector inference procedure,
in this paper (i) the target object can be unknown as well as partially identified even
if the structural parameter is known, and (ii) first step plug-in estimators are allowed.
These two differences allow the new inference procedure to have broader application.
Simulations in Section 5 confirm good size and power properties.

In Section 6, I illustrate the proposed inference procedures in two empirical applica-
tions. First, I consider the application using Rambachan and Roth (2023)’s sensitivity
analysis in Dustmann et al. (2022), which provides an example with a finite set. Specif-
ically, Dustmann et al. (2022) study the effects of the minimum wage introduced in
Germany in 2015. The authors are interested in whether the employment effect is greater
than the negative wage effect, which leads to an elasticity smaller than 1. The authors
conduct the analysis using DiD and relax the parallel trends assumption following Ram-
bachan and Roth (2023). Under all levels of relaxation, the modified conditional CI is
shorter than the simple CI and the one provided by Rambachan and Roth (2023). Under
the benchmark relaxation, my CI suggests that the elasticity is smaller than 1 with a
95% confidence level, while Rambachan and Roth (2023) and a simple CI do not give
results significantly smaller than 1. My method gives a breakdown relaxation 33% to 66%
larger than Rambachan and Roth (2023) and the simple CI. Next, I apply the calibrated
projection CI to Dickstein and Morales (2018). In this case, the set of bounds over which
the union is taken is infinite. The authors are interested in the percentage change in
the number of exporters under a counterfactual information set. They report a simple
projection CI, where the results for all three subsamples are significant. However, as
previously discussed, the simple projection CI is invalid. For that reason, I first validate
their method by properly adjusting for the estimation uncertainty in plug-in estimators

and counterfactuals, and with this adjustment, two of the CIs cross zero. Then I re-



port the calibrated CI, which is not only valid but also more efficient, and the calibrated

projection CI restores statistical significance.

Related Literature

In the rest of this introductory section, I review the related literature.

When the set is finite

Although there are many empirical examples where the identified set is a union of finite
bounds, only a small number of inference approaches have been developed, which I discuss
next.

First, a common practice is a simple CI constructed based on the intersection union
principle discussed in Casella and Berger (2021) (ch. 8.2.3), see Conley, Hansen, and
Rossi (2012), Kolesar and Rothe (2018), Hasegawa, Webster, and Small (2019), and Ban
and Kedagni (2022), among others. The idea is to first construct a CI for each bound
and then take a union over the set, which is intuitive and has uniformly valid coverage.
However, taking union over the confidence intervals inflates the coverage rate, and the
simple CI can be overly conservative. I prove that the simple CI is wider and has lower
local power than my proposal under a large set of DGPs.

Second, Ye et al. (2023) study the relaxation of the parallel trends assumption in DiD
based on a negative correlation bracketing strategy. The resulting identified set for the
ATT is a union bound. To address inference, they introduce two bootstrap methods.
The first one is an empirical bootstrap procedure, in the terminology of Horowitz (2019).
This method is not uniformly valid and may overreject when the bounds are close to each
other. The second procedure introduces an adjustment term based on a subsample so
that it has uniform asymptotic coverage, but at the cost that the CI converges to the
identified set at a rate slower than y/n. This causes material power loss for a large set of
local alternatives relative to my CI.

Third, Rambachan and Roth (2023) propose an inference procedure under the specific
structure of relaxation of the parallel trends assumption in DiD. The main idea is to
partition the parameter space so that each element in the partition can be represented by
a set of moment inequalities. Rambachan and Roth (2023) first construct the CI for each
element in the partition based on I. Andrews, Roth, and Pakes (2023). They then take
a union over different elements in the partition to get a valid CI for the union bound.
While the CI for each element is efficient, the efficiency may not hold after taking the
union. In both the simulation and the empirical application, my CI outperforms their CI
when the bounds are not well separated. Moreover, their method uses the specific DiD
structure and does not apply to general finite union bounds.

The inference procedure constructed in this paper also contributes to other related



literature, such as intersection bounds, moment inequalities, directional differentiable
functions, and conditional inference.

The union bound inference complements the large literature on intersection bounds
and testing moment inequality models. Chernozhukov, Lee, and Rosen (2013) investigate
inference on intersection bounds, where the target object is in the intersection of a set of
bounds. A leading case of intersection bounds is inference on a parameter bounded by
moment inequalities. See Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh
(2008), Rosen (2008), D. W. K. Andrews and Guggenberger (2009), D. W. K. Andrews
and Soares (2010), D. W. K. Andrews and Shi (2013), and Bugni, Canay, and Shi (2015),
among others, for different inference procedures. Inference for intersection bounds and
union bounds share some similar challenges, but also differ in important ways: The
differences between the target object and the bounds, scaled by +/n, is an important
element for inference, but can not be consistently estimated. With intersection bounds,
the signs of the differences are known, e.g. the target object is larger than all lower
bounds, while with union bounds, the sign is unclear, e.g. the target object is larger than
at least one lower bound. Thus the problem of inference on union bounds is fundamentally
different from intersection bounds and requires a different treatment.

My method also sheds light on inference on directionally differentiable functions. In
many cases, a union bound can be written as the minimum of a set of lower bounds to
the maximum of a set of upper bounds. The min and max operators are directionally dif-
ferentiable. Fang (2018) and Ponomarev (2022) study the efficient estimation of partially
differentiable functionals, but they do not consider inference. Fang and Santos (2019)
propose a novel bootstrap procedure for directionally differentiable functions. However,
their inference procedure requires that the null parameter space is convex, which does
not hold for union bounds.? This paper studies a specific non-convex null space, but the
modified conditional procedure is potentially applicable to more general settings.

My paper widens the use of the conditional inference technique. There is a growing
literature on conditional inference, see, e.g. Moreira (2003), Kleibergen (2005), I. An-
drews and Mikusheva (2016), I. Andrews, Kitagawa, and McCloskey (2019), I. Andrews,
Kitagawa, and McCloskey (2021), I. Andrews et al. (2023), and Rambachan and Roth
(2023), among others. I use their insights by constructing a conditional CI that has
proper coverage under a subset of DGPs, and then modifying it with a lower truncation
to guarantee uniform coverage. The modification is a novel contribution that is not used

in current applications of conditional inference.

2Specifically, the space of A\, and )\, under (9) is not convex.



When the set is infinite

Inference procedures with an infinite set are closely related to the literature on subvector
inference in moment inequality models, where a subvector is a known function, usually a
single component, of the structural parameter. Kaido et al. (2019) proposed a calibrated
projection procedure for subvector inference that uses a local linearization approach to
compute the critical value through linear programming. See I. Andrews et al. (2023),
Bugni, Canay, and Shi (2017), Bei (2024), Chernozhukov, Newey, and Santos (2023),
Chen, Christensen, and Tamer (2018), Cox and Shi (2023), among others, for different
subvector inference procedures. However, the subvector usually does not contain sufficient
information for decision making or policy suggestions. Hence, it is important to extend
the previous work to construct the confidence intervals for counterfactual outcomes. In
this paper, I follow the insights from Kaido et al. (2019) and propose a calibrated projec-
tion CI for unknown and potentially partially identified target objects, which has broad
application to counterfactuals. In addition, previous papers assume that all parameters
are estimated jointly by a set of moment inequality restrictions, which rules out plug-in
estimators. Nevertheless, in practice, it is common to estimate the point identified pa-
rameters in a first step separately from the structural model. In this context, I propose
a simple way to adjust for estimation uncertainty in plug-in estimators.

My paper is also related to the literature on counterfactual analysis and marginal
treatment effect models, but my procedure applies to general moment inequality mod-
els. Kalouptsidi, Kitamura, Lima, and Souza-Rodrigues (2021) study the identification
of counterfactuals for structural dynamic discrete choice models and propose an inference
procedure that bypasses model estimation and directly obtains the confidence sets for the
counterfactuals. However, their procedure requires a specific structure. Cho and Russell
(2023) propose an inference procedure in a similar but more restrictive setting where the
bound and set are linear in the structural parameters. Their procedure involves boot-
strapping the value functions of randomly perturbed linear programming problems, which
is computationally attractive but also produces a confidence set with a coverage probabil-
ity of one. Unfortunately, their method does not apply to nonlinear moment inequalities
and counterfactuals. Mogstad, Santos, and Torgovitsky (2016) propose a profile based
inference procedure for estimated functionals of partially identified parameters that al-
lows a nonparametric framework.® In their context, the equality restrictions are allowed

to be random while the inequalities are deterministic, formed from the parameter space.

3Mogstad et al. (2016) is a working paper version of Mogstad, Santos, and Torgovitsky (2018).



2 Setup and Examples

2.1 Setup

A union bound is defined as a union of bounds [A¢(B), Au(5)] over set B. The goal of this
paper is to construct a uniformly valid confidence interval for the target object 6, whose

identified set is characterized as a union bound

BeB

When the union bound is a connected interval, we can imply write it as

o p ), sup ()] 2

BeB BcB
In this paper, I assume that A\, and A\, are unknown but consistently estimable with an
asymptotically normal estimator. B is either known or consistently estimable, in the sense
that the Hausdorff distance between B and B converges to zero in probability. Below I
illustrate this setting in different examples.

I consider separately finite B and infinite B. The inference procedure for these two
cases is distinct because (i) with finite B, I consider the estimation uncertainty for all
bounds jointly, while with infinite B, I focus on a small subset of bounds each time, which
is conservative by valid, to simplify the computation; (ii) when B is finite, asymptotically
we can treat the set as known, while when B is infinite, we need to adjust the set for

estimation uncertainty.*

2.2 Examples
When B is finite

Example 1. (Difference in Differences). Rambachan and Roth (2023) study a more
credible approach to the parallel trends assumption in DiD. To illustrate, consider a
simple panel data model t = —7,...,1. Let v € RT*! be a vector of “event study”

coefficients, which can be decomposed as

B ,Ypre B gpre
7= ,Ypost - 0 + gpost :

4For simplicity, I assume that the index set for the lower and upper bounds are the same, and this
is the case in all the empirical examples listed below. Moreover, this assumption is without loss of
generality, as we can add redundant bounds to achieve this. For instance, if § € [min{A¢ 1, Ae,2}, Au1],
we can add A, 2 = A, 1 then the identified set of § has form (1) with B = {1, 2}.




The target object 6 is the average treatment effect on the treated, and £ is a bias from

pre .

pre gpre is

a difference in trend. Here 6 and £P°%' are scalar, £&P"¢ = ( > and vy =
normalized to zero. Under parallel trends, (£77¢, £P5Y) = 0 and thus 6 is point 1dent1ﬁed.
However, this is a strong assumption that may not hold exactly. One type of relaxation
is to assume that the violation of parallel trends at time ¢ = 1 is bounded above by the

maximum pre-policy trend difference

e 0] < M _max[ell5 — &

7 (3)

where M > 0 is the degree of relaxation specified by the researcher. Manski and Pepper
(2018) implement a similar concept with a natural benchmark M = 1 (see their Table
3). Under (3), the identified set of 6 is a union bound in (2) with B = {1,...,2T}, °

post M pre pre if B = 1,...,T,
M(B) = M(B) =4 0% —75) S - (4)
ypost _ [ (ﬁmﬂﬂ 7?%) if =T+1,..,2T.

Hasegawa et al. (2019), Ye et al. (2023), and Ban and Kedagni (2022) study different
types of relaxations of the parallel trends assumption where the identified set is also

characterized by union bounds. O

Example 2. (Bunching and Taxable Income Elasticity). Blomquist, Newey, Ku-
mar, and Liang (2021) study the identification of the taxable income elasticity with
bunching information. Assume that the after-tax income has two linear segments with
slopes p; > po and a kink at K, as illustrated in Figure la. Assume that the preference

is specified as in Saez (2010) by the isoelastic utility function:

5 y 14+1/6
U(C,y,§>20—1+1/0 (E) ,£>0,6>0,

where y is the before-tax income, ¢ = y — T'(y) is the after-tax income (or consump-
tion), 6 is the income elasticity and £ represents the unobservable heterogeneity which
is continuously distributed with density g(§). Blomquist et al. (2021) show that without
the restriction on ¢(§), 6 is not identified, but we can learn about § with smoothness
restrictions on ¢(£). Consider a bunching interval [y, ys] containing the kink K, as in
Figure 1b. Let & = p7 %y and & = p;%ys denote lower and upper end points for ¢ that

correspond to y; and s, respectively. Under the assumption that

oymin{g (&1),9 (&)} < g(§) < oumax{g (&), (&)} for § € [§1, &) (5)

°In Appendix A.5, I give the union bound form of Rambachan and Roth (2023) “relative magnitudes”
relaxation and “second differences relative magnitudes” relaxation with multiple post policy periods.




for some o, > 1 > g, > 0, the identified set of € is characterized by
0 in A Au R
€ iy (9, man(s)| N

where B = {1,2},

1 | Ppi<Y<ys) _ y2 _ Ppn<Y<ys)
) — log <y; + ff(yl)O'qu > )\6(2) — lOg (y? f*(y2)0uy1 )

log p1 — log p2 log p1 — log p2

v Pyi<Y<ys) _ y2 _ Pn<Y<yo)
o log (yz + =)oy ) log (yl fHy2)oen >

log p1 — log p2

A (2) =
log p1 — log p2 @

f~) =lim f(y), f*=lim f(y),
vty yly2
and f(y) is the density of y. Note that the identified set of 6 is restricted by R, but it is
easy to see that if we have a valid CI for € Uges [Ae(B), Au(B)], then the intersection of

0’s CI and R, is a valid CI for . Thus it suffices to consider inference for union bounds.

Blomquist et al. (2021) focus on identification and put aside inference. ]

(o} (o]

£ £
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(a) Budget Constraint and Utility (b) Bunching Interval

Figure 1: Example 2 Bunching and Taxable Income Elasticity

Example 3. (Regression Discontinuity Design). Kolesdr and Rothe (2018) study
inference in regression discontinuity designs with a discrete running variable. Let D =
1[X > 0] be a treatment indicator with running variable X. Let Y (1) and Y (0) denote
the potential outcome with and without the treatment, and Y = DY (1) + (1 — D)Y(0)
denote the observed outcome. Let u(X) = E[Y | X|. The average treatment effect at
the threshold is

0=E[y(1)-Y(0)|X =0]=limu(z) — lim 4(z).

A standard approach to estimate 6 is to run a local OLS regression of Y on polynomial

10



m(X) with X € [—h, h] where
m(z) =1z >0],1[z >0]x,...,1[x > 02", 1,z,...,2") .

Let v;, be the regression coefficient and 0, = €}, where e; = (1,0, ...,0)". If X is contin-
uous, the bias &(x) = p(z) —m(z)y, is negligible if we choose h — 0 at a sufficiently fast
rate as the sample size increases. However, if X is discrete, this “undersmoothing” pro-
cedure is not feasible. Kolesar and Rothe (2018) propose an honest CI under restrictions
that specification errors at the threshold are bounded above by the specification errors

at other support points, i.e.

lim ¢(z)

S
i ¢(a)] < max |£(@)],

#eSy

< max [{(T)],
xES;

lim £(x)

where Sy = Sx N [—h,0), St = Sx N[0,h] and Sx is the support of X. Under this
restriction, the identified set of § is characterized by (2) with

B = {(Sg,su,l’g,xu> e, 80 € {—1,1}, 20 € Sy, 24 € S}},

)\Z(sfa Su,y Lo,y $u> = )\u(sfv Suy Loy xu) = eh + S@§<$g) + Sué('xu)

Kolesar and Rothe (2018) use the simple CI based on union principle for inference. [

Example 4. (Falsification Adaptive Set). Masten and Poirier (2021) provide a con-
structive way for researchers to salvage a falsified instrumental variable model. Consider

the classical linear model with multiple instruments:
Y =X0+Z'v+ U,

where Y is the outcome, X is a scalar endogenous variable and Z is a L x 1 vector
of potentially invalid instruments. Under (i) exogeneity cov(Z,U) = 0, (ii) exclusion
v = 0 and (iii) a proper rank condition, we can point identify . However, if either the
exogeneity or exclusion restriction does not hold, the model may be falsified. In this
context, Masten and Poirier (2021) suggest relaxing the model by ¢ € R, where £ > 0
measures the level of relaxation. The corresponding identified set of # accounting for the

relaxation by & is
O) ={0eR: €11 <var(Z2) ' (cov(Z,Y) — cov(Z, X)0) < 11},

where the inequalities hold element wise. The authors suggest reporting the falsification

adaptive set ©(§), where § is the minimum relaxation such that ©(¢) is non-empty. In

11



addition, they show that FAS is characterized by (2), where

_ ¥

5

Ae(B) = Au(B)
15 and 75 are the S-th element of ¢ = var(Z) tcov(Z,Y), 7 = var(Z) 'cov(Z, X), and

B={g=1,..,L:m5#0}.

In their empirical application, the authors implicitly assume that either 75 = 0 or |ms| >
e > 0 for all 3, so that B is consistently estimable, in which case my procedure applies. If
we allow m3 — 0 as the sample size increases, we may not be able to consistently estimate
B, and inference is more complicated. I leave the second case for future research. Apfel
and Windmeijer (2022) propose a generalized falsification adaptive set, which also has a
union bound characterization. Both papers do not consider inference.

Stoye (2020) studies misspecification inference for interval identified parameters. The
identified set for @ is [0y, 0,], and this set is empty under misspecification where 6, > 6.
Stoye (2020) suggests reporting the misspecification robust identified set

(6)

[QL HU] U {UU9L+0-LQU}

o1 + oy

where o7 and oy are the asymptotic standard deviations for estimators 0;, and éU. In
this case, the identified set is a union bound in (2) with B = {1, 2},

O'UHL + O'LQU
oL+ oy
O'UQL + O'LQU

Mg =01, Mo=

)\ulzer >\u2:

) )

or + oy

Stoye (2020) proposes a CI for (6), but it does not apply to general union bounds. [

When B is infinite

Example 5. (Counterfactual Analysis). Dickstein and Morales (2018) study how
the information potential exporters possess influences their decisions. In the structural
model, all firms located in the home country are indexed by ¢« = 1,..., N and choose
whether to sell in each export market 7 = 1,...,.J. The export profit that ¢ would obtain

in market j is

Ti; = dij (rij — p1 — Badist; — PBsvij)

12



where d;; € {0, 1} is firm ¢’s export decision, r;; is the revenue in market j, dist; denotes
the distance from the home country to j, v;; ~ N (0, 1) represents the determinant of ;;
observed by the firm ¢ but not by the researcher, and (31, s, B3) are structural parameters.
Let J;; be the information that firm 7 possess. A risk-neutral firm ¢ will decide to export
to j if and only if

Elrij |Jij] — b1 — Padist; > Bsvi;

which implies that
dij (B ' E [ri; | Tij] — B3 ' B — Bs ' adist; — vy;) > 0. (7)

Based on (7), the authors construct a set of moment inequalities to get the identified set

of B, which is, in union bound notation, B. The counterfactual outcome of interest is the

Bldi;;75.9(8)]
Eld;;;7:5.8]

or a different fixed cost, where J is the counterfactual information set and g(j) is the

proportion change in exporter numbers 6 = under a different information set
counterfactual structural parameter. Given f3, the authors show that 0 € [A(3), A\u(5)]
with A\y(8) and A, () point identified. Consequently, the identified set of  is given by
(1). Further details of the moment conditions and counterfactuals are given in Appendix
B.3.

Structural counterfactual analysis with union bound identified set is very common
in applied microeconomics, such as industry organization, trade, political economy, etc.
To list a few, see examples Berry, Eizenberg, and Waldfogel (2016), Bombardini, Li,
and Trebbi (2023), Crawford and Yurukoglu (2012), Ciliberto, Murry, and Tamer (2021),
Eizenberg (2014), Jia (2008), Kalouptsidi et al. (2021), Kireyev (2020), Wollmann (2018),
Yang (2020), among many others. O

Example 6. (Marginal Treatment Effects). Mogstad et al. (2018) propose a method
to partially identify the policy relevant treatment parameters, exploiting the insight that
the IV estimand and many treatment parameters can be expressed as weighted averages of
the same underlying marginal treatment effects. Assume that the treatment is determined
by

D =1[U < p(Z)]

where U is an unobservable with uniform [0, 1] distribution, p(Z) is the propensity score,
and Z are exogenous instruments. Assume that the marginal treatment response func-
tions have parametric form mg(z,u; 8) and my(z,u; ), where my and m; are known
functions, z is other covariates and [ are parameters. Let E[s(D,Z)Y] be an IV-like
estimand using instrument Z, where s(D, Z) is a known function. Then [ is partially
identified by

B— {5 cB:E [/01 o, X: 8)5(0, 2)1 [u > p(Z)] du
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ve [ o, X )s(1, Z)1 [u < p(2)] tu| = £ 15D, 2)v1}

where B is the feasible set of structural parameter 5. Assume that the target object @ is

the average treatment effect. Then it is point identified by

M(B) = MlB) = E [ / (. X B)dU} B [ / o, X /B)dU}

for a given 3, and the identified set of 6 is given in (1). O

Example 7. (Plausibly Exogenous I'Vs) Conley et al. (2012) consider an instrumental

variable model when the instruments are only plausibly exogenous:
Y=X0+2Z+U

where Y is the outcome, X is a L; x 1 endogenous variable and Z is a Ly X 1 vector
of potentially invalid instruments. To simplify the illustration, let L; = 1. Similar to
Masten and Poirier (2021) in Example 4, under exogeneity F [U|Z] = 0, proper rank
conditions, and given a plausible exogenous value [, the average treatment effect 6 is

point identified by

E[XZNE[ZZ|E[Z(Y — Z8)]
E[XZ|E[ZZ|E[ZX]

Ae(B) = Au(B) =

In their empirical application, Conley et al. (2012) suggest using a continuous relaxation

where
B={p:p;€[-B;B],i=1,..,dim(3)}

and [ is a user chosen tuning parameter. In this case, B is known, which is a degener-
ate case of consistently estimable B, and the inference procedure proposed in Section 4

applies. O

3 Inference with Finite B

In this section, I study inference on 6 with finite B, and I focus on connected union
bounds where

6 € |minA,(5), maxAu(5)

since this is the case in all examples with finite B in Section 2.2. A similar inference
procedure applies to general, potentially non-connected, union bounds with the form (1),
which I discuss in Appendix A.3.

To simplify the presentation, I first assume that B is known. In this case, A\(5)
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and \,(f) are finite dimensional vectors indexed by (3, so I write each of them as |B|
dimensional vectors A, and \,, with the 0-th element Ay, and A, ;. I illustrate with a
normally distributed estimator j\n = (5\@, 5\u> such that

A A Yom X
~ ¢ ~ N ¢ bl Zn 9 Zn — & Zum‘ (8)
/\u )\u Efu,n Eu,n

with ¥,, known, where ,,,, 3,, and Xg,, are |B| x |B| matrices. The true value A =
(As; A\u) € A and A can be a lower dimensional subspace of R?8l, e.g. as in Example 1. In
general, the normality holds asymptotically with appropriate scaling, and the asymptotic
variance can be consistently estimated. I later present theorems under general DGPs
where this condition holds in Section 3.4.

I propose a modified conditional CI constructed by inverting the test of the null
hypothesis

Hy:minM\pp < 60 < max\,p. 9
0 beB b =7 = beB u,b ()

The test takes the form
& (9, S, zn> ~1 [T(e) > & (g; a)} :

where T'(6) is the test statistic, and 6 is rejected if T'(8) exceeds the modified conditional

critical value ¢™(0; ). Consequently, the corresponding 1 — a confidence interval is

CI™ (A, Sz @) = inf 0, sup 6. (10)
?(0,An,50)=0 (9 X,,,5,)=0

3.1 The Test Statistic

The test statistic has a max-min form

T(0) = max {rgélél Zip, min Zu,b} (11)

where Opp = \/Zz,bln Oub = 1/ Embb»

Aep— 0 0—\,
Z&b = &b 5 and Zu,b = ’b. (12)
Oub Oub
Observing that Hy in (9) is equivalent to
Hy : max {Ibréiél()\g’b —0), rgéiél(ﬁ — )\u7b)} <0, (13)
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and the test statistic is constructed by replacing A, and A, in (13) by their estimator,
adjusted for the standard deviation. Put another way, the population version of T(Q),

which replaces (S\g, 5\u) with (Ag, Ay ), is non-positive if and only if Hy holds.

If we use a simple critical value ™ = ~1(1 — 5 ), then we will get a simple CI
O™ = |minApy — 0rp® (1 — =), max Ay + ooy ® (1 — =) (14)
beB ’ 27 beB " v 27]7

which is often used in current practice, see e.g. Kolesar and Rothe (2018), Hasegawa et al.
(2019), Ban and Kedagni (2022). The simple confidence interval is uniformly valid under
mild conditions, see Proposition 2 in Kolesar and Rothe (2018). However, in general, it

can be very conservative. To illustrate, define

by = argmind,p, b, = argmax\,. (15)
beB beB

and observe that

s1m o -1 _g
P(@gC’] —P(m {Ibrélllnggb rgn[l;lZub}><I> (1 2))
PQmﬂaM M}>¢(120
§P<Zg,bz>® 1--) (u,, > ¢! 1—%))
Ao, — A A 0
:P<€“ e RO )) (16)
Oup oy 2
>\u _S\u 6_)\u —
+P( T 1<1—g>> (7
Ju,b O—u,b 2
<Oé+04_
=9 Ty T ®

Here the first inequality holds because I replace the minimum of Z, and Z, by the value
at by, and b,, which may not be the realized minimizers in the sample. The second
inequality follows from P (AU B) < P(A) + P(B). The final inequality holds under the
null hypothesis (9).

The potential conservativeness comes mainly from the first and last inequalities. The
first inequality tends to be conservative when the minimum Ay, is close to other elements
in Ay. In such cases, we should consider the minimum of the vector Z, instead of merely
Zip,- The same reasoning applies to the upper bound. The last inequality becomes

conservative if the union bound is wide, i.e.

)\u,bu - )\Z,bg

> 0.
max {0y p,, Orp, }
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In such cases, either (16) or (17) is negligible, allowing us to replace ®~'(1 — §) with
®~!(1 — @). This scenario is also studied in Imbens and Manski (2004) and Stoye (2009)
for a single bound where |B| = 1. Besides the first and last inequalities, the simple CI is
also conservative because the second inequality does not fully use the joint distribution
of (Zop,, Zuby,)-

That said, the simple critical value is near optimal in less favorable cases, where both
the minimum and maximum are well separated, and the length of the identified set is
short, i.e.

Auby = Aub Auby = Aob,

Aoy — Ao .
min ———* >0, min = > 0, -
beB\by  Oup beB\by Tupb min {osp,, Oup, }

~ 0. (18)

In such scenarios, the first and last inequalities are close to equality, mitigating any
significant power loss. This implies that ¢*™ is nearly optimal among constant critical
values because it protects against the less favorable distributions, although at the cost of
an inflated coverage rate against more favorable DGPs. Therefore, it is crucial to devise
a data-dependent critical value that ensures proper coverage under case (18) but is more
efficient under other DGPs.

3.2 Conditional Critical Value

Following from the previous discussion, I now construct a data dependent critical value
that is valid under less favorable DGPs and more efficient otherwise. To do so, note that
under less favorable DGPs in (18),

P(E,UE,) ~ 1 (19)
where®
By ={1(6) = 2,5, } 0 { N, <0}, (20)
By = {T0) = 2,5, } 0 { A5, 20},

by = argminZ,;, b, = argminZ,, ;.
beBy beBy

If the critical value ¢(0) satisfies

P (T(@) > &(6) |E, U E> <af <a, (21)

Tf the minimizer of Z, is not unique, define Bg as the smallest element of the minimizers, with an
analogous definition for b,,.
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the unconditional rejection rate is bounded above by a following from (19). Therefore, I

construct a conditional critical value based on the conditional distribution
T(0) |T(0) = 245, and T(0) |T(0) = Zy,

for by, by satisfying Ay, < 0 < Ayp,-

Lemma 1. Under Hy and (8). Let by, by satisfy ey, < 0 < Ayp,, then

@ (7(0)) = @ (10, (6,b0))
® (t2(0,01)) = @ (t01(6,01))

@ (7(0)) = @ (tua(6,01))
® (tu2(0,b1)) — @ (tua (0, by

{76) = 2.} "0 Unif(0, 1)

))‘{T(e):zu,bz} "0 Unif(0, 1)
where

~\ —1 ~ ~
win (14 p(0,8))  (Z,5+ p(b:8)Z0s) . if mings, (b,5) > —1
te1(0,0) = ¢ beB beB

—00 otherwise

~ -1 ~ ~
min (1 + pea(D, b)) (ZU; + pea(, b)zu,b) . if minpg (b, b) > —1
tu1(0,b) = beB beB

—00 otherwise

~\ —1 ~ ~
min (1= p0,8) (25— pu0,8)20)  if mingu(b,5) < 1

te,z(e, b) — { beBpy(bb)<1 T
\+OO otherwise
( B _1 3 )
Cmin (1= pu0.0) (205 - 000 Z0) i mingu(b,5) < 1
tuo(0,) =  beBpu(bb)<1 : i
oo otherwise

\

Y0 bib by b

,b1b2 u,b1 b2 Lu,by ba

pf(blu b2) = ) pu(b17 b2) = ) Iofu(bla b2) - )
00k, 00,bs T by O b 00k Oubs

and Z;, Z, are defined in (12).

Loosely speaking, Lemma 1 implies that the distribution of T(H) conditional on
() = Zyp, 1s first order stochastically dominated by a truncated normal distribu-
tion TN (0,1, [te1(0,b1),t02(0,01)]), where TN (u,0?,[t1,t2]) is a normal distribution
N (11, 0?) truncated at [t;,ts]. Hence, we can guarantee conditional coverage by using
the 1 — ¢ quantile of TN (0,1, [te1(6,b),t,2(0,0)]) with a® < a.

Define the conditional critical value ¢°(0, a®) as:

o1 (aCCID (tm(e Bz)) + (1 —a%)d (te,z(G, 13@))) it Z,;, > 2,5,

0,07 = ot (ofq) (%,1(9: Bu)) + (1 —a%)® (t“’z(e’ B”))> if Zebe < Zup,

(22)
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where a¢ € (%oz, «) is a user chosen tuning parameter, with a suggested rule of thumb

value %oz. As we will see later, a° trades off the rejection rate under more and less

favorable DGPs.

Proposition 1. Assume that
P (2,4, = Z.,) =0 (23)
Under Hy and (8), it holds that

P (T(e) > (0, )

EU Eu> < at, (24)

Under (23), the set E,UE, can be partitioned into {T(H) = Zg’bl} and {T(Q) = Zu,bg}
for by, by satisfying Ay, < 0 < \p,. Hence (24) follows directly from Lemma 1. Condition
(23) holds in most examples previously discussed and is assumed in Proposition 1 for
simplicity. Under more favorable DGPs diverging from (18), the conditional quantile can
be significantly smaller than ®~'(1 — §). To see this, let § = Ay, be the lower bound of
the identified set and assume that 7 (0) = Z,;,- If the identified set is very large relative

to the standard deviation, we have

~

t1(8,by) < (1 + peu(be, bu)>1 <Zu,bu + pea(by, bu)Zz,u)

— (14 pualbe b)) Aeb b by = T )z ) 25
= Peul0¢, Oy pfu( 05 u) 0hy | T, ( )

Uu,bu U,by

AZ,ZE@ _Au,bu

Q

where the approximation =~ follows from —oo for a large identified set. In

Ou,by,

this case,
éc(e’ac) ~ ¢_1 <(1 _ aC)(b (téy2(07l;£)>> S (b—l (1 _ ac) < @—1(1 . %)
Moreover, if the minimum Ay _, is not well separated from A;;,, then the upper bound

7 ~ ~\—1 5\ = — A3 A — )\
te2(0,b0) = min (1 — pe(by, b)) ( 4,b 0b n 0b £,by
)<1

O¢h O¢h

- L - Ze,i)[ + Ze,i)[
beB:py(be,b

will be the minimum of several random variables, which will further reduce the critical
value.

I next illustrate the conditional critical value using a simple example.

Example 8. (Simple Union Bounds) Consider a simple union bound
0 c [mln {)\1, )\2} , Imax {/\1, /\2}]
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and the estimator satisfies
(Xl e — AQ) ~ N (0,T5) .
The test statistic has the form
T(G) = max {min {5\1 -0, Ay — 0} , min {9 — 5\1,9 — 5\2}} )

Without loss of generality, assume that T(@) = M\ — 6. In this case, the conditional

critical value is

&6 0) = ¢! ((1 ~a%)d (Xg - 9) +acd (0 - XQ))
<0 T(1-a% <! (1 - %) , (26)

where the first line is by construction, and the first inequality follows from
o (o) +@(0-) =1

If the minimizer and maximizer are well separated, e.g. A\; = 6 and Ay — 00, the efficient
critical value is ®~1(1 — «), as discussed in Imbens and Manski (2004). In this case, Ay
will be large and ¢¢(0;a¢) — ®1(1 — a°), which is slightly conservative. This follows
from the fact that the conditional critical value is designed to correct for the case when
all elements, except for b, and b,, are far away from binding. On the other hand, if Ao
is relatively small, then the critical value is smaller. In Figure 2a, I plot the rejection
region for the simple and conditional critical values with v = 0.05 and a® = 0.04. The
red curve is the boundary corresponding to the conditional critical value, and the grey
region is the rejection region for the conditional critical value. Finally, the two square
regions filled with lines are the rejection region of the simple test. The rejection region of

the conditional test is strictly larger than the simple test, resulting in larger power. [

It is important to note that ¢°(f, 1 —a®) may not serve as a valid critical value, because
P (E,U E,) can be much smaller than one when moving away from (18). For that reason,
next, I show how to construct a uniformly valid modified conditional critical value that

retains favorable power properties relative to the simple critical value.

3.3 The Modified Conditional Critical Value

To guarantee proper coverage, I introduce a novel modification to the conditional critical

value:

™ (0;a) = (0, ¢" o) = max {¢°(6, ), "} (27)
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Figure 2: Example 8 - Rejection Region
The red curve corresponds to é°(0; a©). The blue solid line represents the lower truncation é*. The grey region on the left
panel denotes the rejection region for the test with the conditional critical value é€(0; a€), and the one on the right denotes
the rejection region with the modified conditional critical value é™ (6, ). The two square regions filled with lines represent

the rejection region of the simple test. In this example, @ = 0.05 and o = 0.04.

where ¢' is defined later in (31).
To illustrate the construction of the lower truncation, let CI m(c) be the confidence
interval based on (10) with ¢™(6; ) replaced by ™ (6, c; ). Given a potential true pa-

rameter A, the rejection rate at 6 is
p(c;0,\) =P ((9 ¢ CA’jlm(c);)\) .

It suffices to define the lower truncation as the minimum value that achieves uniform size

control, i.e.

c'(6) = inf {c eER,: sup p(co,\) < a} , (28)

AEAo(0)

where Aq is the set of feasible \ satisfying Hy:
Ao(0) = {()\[, M) EA min Aip <0< max )\u,b} )
Note that ¢'(f) < ¢&™ = &71(1 — &) because
p(E™;0,)) < a

from the discussion in Section 3.1. In fact ¢*(0) is usually significantly smaller than ¢5™.

The intuition is that by virtue of Lemma 1, truncation is unnecessary for DGPs such that

11—«
1—ac

P (B U BN > (20)
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with o < «a, where Ey, E, are defined in (20). Thus we only need to consider truncation
in more favorable DGPs deviating from (18), i.e. when the minimizer or maximizer is not
well separated, in which case a smaller critical value suffices. Given (6, A), we can calculate
p(c; 0, A) by simulation. Nevertheless, calculating CI m(ct) can be time consuming because
(i) we need to calculate ¢*(6) for a grid of 6 to get the confidence interval and (ii) Ag(6)
is an unbounded set, which slows the computation down.

To improve computational efficiency, I propose a lower truncation that does not de-
pend on . First, note that for given A, either 6 € [0y, 6,,] or 6 € [0,,,0,], where 0, = Ay, ,
0, = Aup, and 0, = (6,4 0,)/2. As a result, we can bound p(c; 6, \) by

p(c; 0, ) <maX{P ( ¢, 0] £ cr (c); /\> , P ([em,eu] Z CA'jfm(c); A)}
<max{P( (6¢) > & (0, ¢) or {T(em) > (O, ¢) and T(6,) > Em(Hu,c)} ;A) ,
( > &(6,, ¢) or {T(em) > & (O, ¢) and T(8;) > & (6, c)} ;)\)}
Therefore, it is valid, but conservative, to replace p(c; 0, A) in (28) with p(c, ). In addi-

tion, to avoid maximization over an unbounded set, let Abeal-— 1 compact confidence

set of \, such as”

~

A AN EA: L Ae’b‘ o(1- 1 b — A o(1- 1
e ” E — S _ , S P
! (e ) Oy ( 4|B|) Tud ( 4|5’|)

with suggested value n = 0.001. In sum, it suffices to use

¢ = inf {020: supp(c,A)—l—nSa}, (31)
¢ AeA,

and p(c,A) is defined in (30). In terms of computation, p(c,A) can be conveniently
calculated via simulation, and we only need to calculate the maximization over a bounded
set once rather than for a grid of #. In general, with 7 small enough, ¢' is much smaller
than ®'(1 — §) by the intuition explained around (29). Moreover, in many examples,
the feasible space A is a lower dimensional subspace of R?Bl so that the supremum is
taken over a space much smaller than R?8!, which reduces the computational cost.

The lower truncation ¢' is more likely to bind under more favorable DGPs, and it
decreases in the tuning parameter a. Hence, a° trades off the power between more and
less favorable DGPs. A larger af leads to higher power under less favorable DGPs, while
a smaller a leads to higher power under more favorable DGPs. It is possible to choose

an optimal a° by, e.g., maximizing the weighted average power. I leave this to future

"Section A.1 gives a more efficient [\n set.
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research.

Remark 1. The relaxation in (30) to get p(c, A) is not overly conservative. To see this,
if the identified set is large, 6,, will be covered by the modified conditional confidence
interval with probability close to 1, so the conservativeness introduced by this relaxation
is negligible.® Conversely, if the identified set is very small, then the set’s coverage will be
similar to the coverage of a point. Moreover, we can reduce conservativeness by increasing
the number of elements in the partition at the cost of increased computational difficulty.
For instance, we can add the quarter point 6,4 = (36, + 6,)/4 and three-quarter point
03/4 = (0¢ + 36,)/4 in addition to 6,,, and bound p(c; 0, \) by

p(c;0,\) < max {P ([95, 014] Z CI(c); A) P <[91/4’ 0] € a1 (: A)
P ([0771783/4] Z ajm@t);/\) P ([93/4,%} < &m(ct);A>}

which requires conducting the test at five points 0y, ¢/4, 0, 03/4 and 0, but returns a
weakly shorter CI. O]

Example 8. (Simple Union Bounds, Cont.) For simplicity, in this example I let n = 0.
With a = 0.05 and a° = 0.04, we can calculate that ¢® = 1.06. In Figure 2b, I plot the
rejection region of the modified conditional test and the simple test. The blue dotted
curve is the boundary corresponding to the lower truncation ¢, and the grey region is
the rejection region for the modified conditional test. The rest are the same as in Figure
2a. As we can see, the rejection region of the modified conditional test is strictly larger
than the simple test, leading to power improvements. Compared to the simple rejection
region, the conditional test also rejects if both A1 and )y are small. The intuition is that
if both A; and Ay are close to zero, then there are multiple approximate minimizers and
maximizers, so we only need a small critical value. The lower truncation ¢* removes some

counter-intuitive values from the rejection region close to Hy, e.g. (5\1 -0, Ao — 9) =
(e,¢) =~ (0,0). O

3.4 Size and Power Properties

I now present the conditions under which the modified conditional CI has asymptotic

uniform validity.

Assumption 1. (Known Singularity) There are known |B| x J matrices Ay, A, such
that

N = Ap, Ay = Audp (32)

8To see this, note that by construction é™ > 0, so [)\e EwAu Bu] c Ccm <;\mZn;a). If

\/ﬁ()\u,bu — )\[71,[) — 00, wWe have P (5‘6 i)e § Hm S 5\u i)u) — 1.
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for some (8p, 0n, ).
Assumption 2. (Asymptotic Normality) Let BLy denote the set of Lipschitz functions
which are bounded by 1 in absolute value and have Lipschitz constant bounded by 1. We

assume

Ep [f (VA (6. —p))] - ELFER)] =0,

lim sup sup
n—00 pcP feBL,

where Ep ~ N(0,8p).

Assumption 3. (Full Rank) Let S denote the set of matrices with eigenvalues bounded
below by e > 0 and above by é > e. For all P € P, Qp € S.

Assumption 4. (Consistent Covariance Estimator) We have an estimator Q, that is

uniformly consitent for Qp,

lim sup P <HQn —QPH > 8) =0

n—o0 pep
for all e > 0.

Assumption 5. (Confidence Set of (A, \)) For all m € [0,%), the confidence set A,
satisfies
limninf}ijrel%P (()\g, ) € An) >1—n.

Assumptions 1, 2, 3 and 4 imply that /n (5\” — )\p> is asymptotically normal with
a consistently estimable variance. The asymptotic variance is allowed to be singular,
but the source of the singularity, i.e. A, and A,, is known to the researcher. Given
this, we only need to verify whether A, = —aA,, for some a > 0 to know whether
peu(b1,b9) is at the boundary —1, which simplifies the construction of ¢°(6,«). These
assumptions hold for the examples in Section 2.2 with finite B under mild conditions,
and I give detailed illustration based on Rambachan and Roth (2023) in Appendix A.5.
Assumption 5 requires that Ais a uniformly valid 1 — 7 confidence set of (As, A,), e.g. A

implied by (69) in Section A.1.

Theorem 1. (Uniform Coverage) Suppose Assumptions 1, 2, 3, 4, and 5 hold. Let
a € (0,1/2), a® € (%,), n € 0,25%). It holds that

lim sup sup sup P (6’ g CcIm <5\n, f]n/n, a)) <a.

n—oo  PEP g P\pr)\u«bu]
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Remark 2. Theorem 1 shows that the modified conditional CI has uniform asymptotic
coverage under a large set of DGPs. Moreover, with some modification, the proposed
method can be applied to cases where Assumption 4 fails. The main idea is that we can
rewrite the union bounds as the union of several sub-union bounds, with Assumption 4
holding in each sub-union bound. By taking the union of Cls for each sub-union bound,

we can get a valid CI for . T illustrate this in Example 9 in Appendix A .4. m

Remark 3. The same inference procedure and coverage property apply when B is unknown

but consistently estimable in the sense that dpy (5’, B) 25 0 uniformly where dj is the
Hausdorff distance and B C B is the estimator for B. B is a finite outer set of B. The
reason is that for finite B, there is € > 0 such that
liminf inf P (B - B) — liminf inf P <dH ([5’, B> < z—:) — 1. (33)
n  PeP n  PEP
Therefore, asymptotically we can treat B as the true set without adjusting the estimation

uncertainty. Masten and Poirier (2021) and Apfel and Windmeijer (2022) implicitly

assume (33) in their empirical applications, see Example 4 for more discussion. O

Next, I compare the modified CI to two existing approaches which are also uniformly
valid: (i) the simple CI given in (14), and (ii) the adjusted bootstrap CI proposed in Ye
et al. (2023).

Theorem 2. (Power Comparison with Simple CI) Suppose Assumptions 1, 2, 3, and 4

hold. And A, is defined as in (68). Let a € (0,1), a® € (2,a), n € [0,252). If one of

the following two conditions hold

1. (Symmetric Bounds)A, = A, and P, satisfies

hgleilip max ity p (b, b) < pi(e, ), (34)
lim sup pﬁ(bla bu) < p;(O&, n)a (35)
PeP,

where pi(a, ac) and pi(a,n) are defined in Lemma 10 and Lemma 7, respectively.’

2. (Large Bounds) Let k,, = o(y/n) and k, — oo, and

P, = {P ep: >\u7bu — )\@71,[ > %} . (36)

It holds that

1. Modified conditional CI is shorter: there is o' > « such that

liminf inf P (C’Im (5\”, in/n;a> c orsm (5\”, in/n;o/>> =1. (37)

n PeP,

9Here pp(b1,b2) = pu(b1,b2) = pru(b1,bs), so I only impose restrictions on py.
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2. Modified conditional CI has higher power: for all P, € P,, there is a subsequence
P,, and k € (0,+00) thus that

liminf Py, (0, & CI™ (A, Sa /0 @) ) = Pay (b0, & CT™ (Ao, S, fania) ) > 0.
Anp—>00
(38)
for 0, =0, — \/iﬁ The same applies to the upper bound.

The first part of Theorem 2 considers the case where the upper and lower bounds are
symmetric, as in Kolesar and Rothe (2018), Masten and Poirier (2021), and Rambachan
and Roth (2023). If the correlation coefficients among A, are not too large, the modified
conditional CI is strictly shorter than the simple CI. The upper bounds pi(«, ) and

ps5(a,m) can be easily solved for numerically, and I list the value for a few combinations:

p5(0.05,0.04) = 0.84, £3(0.10,0.08) = 0.83,
£3(0.05,0.001) ~ 1, £5(0.10,0.001) ~ 1.

The values are large and thus the restriction (34) is not binding in most applications.

The second part of Theorem 2 compares the modified conditional CI with the simple
Cl in a different set of DGPs. It shows that if the identified set is relatively large compared
to the standard deviation of the estimators, which is O(\/Lﬁ), the modified conditional CI
is shorter than the simple CI with probability approaching one. The intuition follows
from the discussion around (25).

Next, I compare the modified conditional CI with the adjusted bootstrap procedure
proposed by Ye et al. (2023). Their bootstrap procedure relies on a random draw of a

subsample with size m = - and thus the convergence rate of the confidence interval to
the identified set is y/m, slower than y/n.

Theorem 3. (Power Comparison with Ye et al. (2023)) Let C' I YKHS <;\n, S /n; a) be the
adjusted bootstrap procedure proposed in Hasegawa et al. (2019) Algorithm 1 equation (15)
with tuning parameter m = -, where k, — 00 and K, = o(n). Let a >0, K}, = o(\/Kn),

Kl — 00. Define local alternatives

/ /
. K
n — 1 b — ——a, O n—IaX Ay p —=Aa.
6, = min \,, ~a, or0 ax Ay p + —
beB beB

Vn v

Then

liminf inf P <9n gCIm (:\n,in/n; a>) =1 (39)

n—oo PeP
lim sup sup P <9n ¢ CTVEHS (:\n, f]n/n, a>) <«

n—oo PeP

Theorem 3 follows from the convergence rate of CIYXHS and CI™. The sequence of
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0, is rejected by the modified conditional CI with probability approaching one following
from Lemma 2, while it is rejected by CTYEHS with probability bounded above by «a.

Hence, CI™ has large power improvement upon C'1YXHS,

4 Inference with Infinite 5B

In this section, I explore the inference procedure with potentially infinite B. This ap-
proach has broad applications in counterfactual analysis within a structural model, where
B represents the identified set of the structural parameters, and the target object 6 is the
counterfactual of interest.

The identified set of 6 can be expressed as

0 e U [)\p,g(ﬁ,sﬁp)a AP,u(ﬁaSOP)}’

BeB

where B C B is formed by the moment inequalities:

Ep [m;(Xi; 8,0p)] <0, j =1,.., J1, (40)
Ep[mi(Xi; 8,0p)] =0, j =1+ 1,... 1 + o, (41)

as is often the case in empirical applications. Here, B is the known parameter space
of B, {X;},_, is an independent and identically distributed (i.i.d.) sequence of random
variables with distribution P and (my,...,my45) : R x B x & — R/ is a known
measurable function of a finite dimensional parameter vector (3,¢) € B x @. In turn, ¢
is a nuisance parameter with a point identified true value ¢p, which can be estimated in
a preliminary step without using the moment inequalities in (40) and (41). Additionally,
I assume that

op = ¢ (Bp [m, (X)), (42)

where m,, and o' are known measurable functions. Given a potential true value 3, the
object 6 is bounded by Ap(8, vp) and Ap, (5, ¢p). For this, I assume that

)\P,k(ﬁa 90) - >‘]t; (EP [mk (sz B7 90)]) k= g? U, (43)

where my : R4 x Bx & — R%, Al : R%* — R are known and measurable functions. I give
a detailed illustration in Section 5.2 based on Dickstein and Morales (2018).

It is important to note that (42) and (43) impose that estimands are functions of
moments of the data. However, it suffices to have that the asymptotic distributions of

the estimators for (Apg, Apu, op, Ep [m;(X; B, ¢)]) can be easily approximated.
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4.1 Notation

To begin, I define the estimators used for inference. I treat moment equalities as two

opposing moment inequalities and define J = J; + 2J; moments by letting

Mg = (M1, ooy Mgy 4Ty — T Jp 415 ey —T 4205 -

Then, define
_ BN
mg (B,¢) =~ > mg (XiiB,9),
i=1

1 n
mk(ﬁ#ﬁ)zﬁzmle()(mﬁﬂp)a k:£7u7
i=1

B 1 &
My, = Z my (X;) .
=1

= >
Intuitive point estimators for Apy (8, ¢p), k = ¢, u, are given by

Ae(B) = AL (i (B, 9)) (44)

with first step estimator ¢ = ¢ (m,).

Next, I present the covariance matrix for the asymptotic distribution of

mg (B, ¢) = Ep [mg(X; 6, op)]
Gn(B) = vn f\z(ﬁ) — Ae.p(B, 0p) : (45)
)\u(ﬁ) - Au,P(ﬁa SOP)

Let
Qp(B) = varp (( my(X; 8, 0p), my(X;B,0p), m,(X;8,0p), m,(X) )/)

denote the covariance matrix for the moments evaluated at (3, ¢p). The variation of
G, () arises from two sources: (i) the use of sample averages for expectations, which
comes from the variation in m/;, my, m,; and (ii) the estimation uncertainty in ¢, which

comes from the variation in m,,. Define the Jacobian matrix of the estimator

(M7 (B,8) . M(B), \u(B))
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with respect to the moments as

ZJa Oa 07 VL,D’E[m(Xa/87(pP)] VISOT
Gp(ﬁ) = 07 V/sz 07 v(p’AP,Z (ﬁ7 QOP)VISOT : (46)
07 Oa v,)‘ju vcp’)\P,u(ﬁa (;OP)V,QOT

Then the first source of the variation of G,,(3) is captured by the first three block columns
of Gp while the second one is captured by the last block column of Gp. In (46), V' )\2

is short for Vm/)\z(m) B (Baon)] with k& = ¢, u and V' is short for Vm/¢T(m)|E[mw(X)].

Under mild regularity conditions, the asymptotic variance of G, () is given by

Ep(B) = Gp(B)Qp(B)Gp(B).

Throughout the paper, I assume that there exist consistent estimators G(ﬁ), Q(B) for
Gp(f), Qp(B), respectively. A computationally simple and intuitive estimator of (/) is

5(8) = G(B)QUB)G(B).

To simplify notation, let

58 = /S Vi = L, 0(B) = \[Sua(8), Gu(8) = \/Srea(8), (47

5@ =[O 1. =1 ]96) [0, 1. 1]

where 6,,(/3) is the estimated variance of /n (Xu(ﬁ) — Me(B) = Apu(B, 0p) + Ape(B, cpp)).
Define (), 0¢(B), oue(B) as in (47) with ¥ replaced by X.

Lastly, let
Vg A
Dpi(8) = ipj(’%(i’f;), k=1 u, (48)
Vg E | m;(X;
D) = VIR G, (49)
7«] ?

be the Jacobian of the objective and moment conditions with respect to the parameter 3
normalized by the standard deviation. Furthermore, assume the existence of consistent
estimators Dy (8) and D;(3).
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4.2 The Confidence Interval

The confidence interval has the following form

I a0(B) . 2 o
Cl, = [/131612)\@(5)— N ¢a(B), Zlelgku(ﬁwr NG

cn(ﬁ)] : (50)

where B is an estimator for B defined as

B= {563:%9%(5), ijl,...,J}, (51)

and ¢(f) is the critical value specified below. The same critical value is used for both
the moment restrictions and the bounds 5\g, S\U The main reason is that, for both the
objective and moment conditions, the critical value provides an upper bound for a normal
random variable with a non-positive expectation and unit variance, and consequently it
is natural to use the same critical value.!® In addition, it is computationally easier than
calibrating multiple critical values.

Next, I define the critical value ¢,(3). The critical value is given by

¢n(B) = max {¢u(f), ¢(F)}, (52)

where for k = 0, u, [{] = u, [u] = ¢,

¢e(B) = inf {c ER,: P ( min  Z3(8) + Di(B)A < ¢, and (53)
AEA,(Be)

i Z5(8) + Dyg(B)A + GolB) < e

(X)) z1-af. G
and the random feasible set for A is

An(p.c) ={A e VB -g)npl-1,1]":

) . (55)
Z(8)+ Di(BA +G(B) S e.j=1,..., T},

The elements in (53), (54), and (55) are listed below.
L. Z%(-), Zi(-), Z;(-) is simulated from

-1/2 ..

(@500, 2209). B | LYy ~ A (0o (569)) 2 9) o (509) )

2. éj (8), 50(5) in (54) and (55) are generalized moment selection (GMS) type functions

0T see this, (60), (62), (63) have similar structure with non-positive last term %,
op,; (B, n
Are(B)=0  0—Ap.u(B)

AT respectively.
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defined as

) 0  ifYuBd > g =g 41,
&(B) = kn6;(B)

—o00 otherwise

: Va(Au(B)=Ae(8))
1 - _ - <1
Go(B) = kin max{6(B),5¢(B).5ue (B)}

—00 otherwise

where k, = o(ni) and k, — o0, with a suggested value vInn. It is easy to see
that if 60(5) = 0, it holds numerically that ¢(3) = ¢,(5); and if fo(ﬁ) = —00, the
constraint with Zj (8) in (54) is negligible.

3. p > 0is a user-chosen tuning parameter with the recommended rule of thumb value

1/d
(1 1 Ji4+ Jo+2

o[ (1-

P 2+2< 77/( p )) (56)

with 7 = 0.01. The critical value ¢,(f) is weakly decreasing in p, thus a larger
p returns a shorter confidence interval. Nevertheless, uniform validity of inference
requires p < 00.
Note that (53), (54), (55) are linear in A. Therefore, with polyhedral B, which is a
frequent scenario in practice, the computation of the critical value ¢(8) can be simplified
to the process of solving linear programs.
The construction of the confidence interval uses the insights of Kaido et al. (2019),

and the intuition is as follows. By definition, there is some “true value” g € B such that

0 e [)\p}g(ﬁ, ©p), )\P,u(ﬁa ©p)]

A sufficient condition for 6 being covered is that there exists

BeBm{m%[—Lud} (57)

such that (i) € is covered

() - 26,5 < 0 < 05 + 22 (59)
and (ii) the moment conditions are not rejected
vrm;(6) <én(B), Vi=1,..,J (59)

;(83)

That said, we only need to calibrate ¢() such that (58) and (59) hold with probability no

31



less than 1 — « for some f in the true value §’s local neighborhood, without considering
the coverage of [ itself. This returns a much smaller critical value than uncalibrated
projection, which covers the structural parameter [ with prespecified probability in the
first step.

In (57), (3 is restricted to a local neighborhood of 3, and the tuning parameter p defines
its boundary. This allows us to linearize (58) and (59), so that they can be approximated

by (53, 54) and (55), respectively. As for (59), a first-order Taylor expansion gives

Vim;(3) Gy (6)

VIE [m; (83, op)]
5:(3) ap](m (60

UP,j(ﬁ)

+ Dp;(B)A +

where A = /n(8 — ), G, Dp, and op are defined in (45), (49) and below (47), re-
spectively. In (55), I replace % and Dp () with their feasible analogs. In addition,

VnE[m;(8,ep)]
op,;(B)
can be conservatively approximated by the GMS function proposed in D. W. K. Andrews

it is well known that the last term can not be consistently estimated, but
and Soares (2010). Therefore, (55) is a valid approximation of the moment restrictions
n (59). Similarly, (58) is equivalent to

MB) -8 _ . 2 0 — \u(B) 5

W < ¢(B), W < ¢n(B). (61)

Ae(B) — 6 G (B) Ape(B) — 0
sBva on® O G Gy (62)
6.(8)/v/n opu(B) T PruB)AE ) T apu( G (63)

The approximations for (62, 63) are similar to the moment restrictions, except for the
)\p@(ﬁ) 0 0— >\Pu( )
last term N OING and PRGN Here, 6 is unknown and partially identified, thus the

GMS functlon does not directly apply. However, observe that if

Vi (Apu(B) — Are(B))
Kp Max {UP,u(ﬂ)v O_P,é(ﬁ)7 OP,uZ(ﬁ)}

— 00, (64)

. Ape(B)—0 0—-Ap.u(B)
either sy O - 5)/vn

binding with probability approaching one. Otherwise, we can replace both terms with

would go to —oo and at least one inequality in (61) is not

zero if (64) does not hold, which introduces a conservative distortion, which in turn leads
to the restriction in (53) and (54).

Remark 4. The construction of ¢, uses the insights from Kaido et al. (2019) but with two

main differences. First, Kaido et al. (2019), as well as many moment inequality papers,
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assume that all parameters are jointly estimated by a set of moment conditions, while
in this paper, I allow for first-step plug-in estimator ¢ and suggest an easy adjustment
for its estimation uncertainty. Second, the target object of Kaido et al. (2019) has form
0 = \(B) with a known function \(-), while my paper assumes that 8 € [A\,(5), \.(8)] with
Ae(+) and A, (+) estimated. In addition, the definition of Jacobian Dp; in (49) is different
from Kaido et al. (2019), where DEM5(-) = Vg {E [m;(X;-)] /op;(-)}. Note that under
mild conditions, Dp;(-) and DEM5(-) are asymptotically equivalent for 3, € B such that
the moment is close to binding, i.e. E[m;(X;3,)] = o(1). If E[m;(X;f,)] is bounded
away from zero, Dp;(-) and D }%(-) become irrelevant, since in this case, moment j is
either slack or rejected with probability approaching one. I use the definition in (49) as
it is easier to calculate. Moreover, the analogous Jacobian for A, defined in (48) follows

directly from the Taylor expansion in (62)-(63), where the denominators are fixed. [

Remark 5. The construction of the CI relies on test inversion over the structural pa-
rameter space, which can be time-consuming. However, the E-A-M algorithm proposed
by Kaido et al. (2019) can enhance computational efficiency with certain modifications.

Refer to Appendix B.1 for further discussion. O

4.3 Asymptotic Results

I present next the assumptions that are important for proper coverage.
Let B be the ¢ expansion of B

B ={BeR":d(B,B)<c}.

Assumption 6. B C R? is a compact hyperrectangle with nonempty interior.

Assumption 6 restricts the shape of the parameter space. It is satisfied in most
applications and guarantees that the calculation in (53) can be obtained with simple

linear programs.

Assumption 7. Let

DPZ[DP,l(ﬁ)' .. Dpy(B) Dpu(B) DP,u(ﬂ),i|,'

€

There is M < o0, € > 0 such that for all P € P, for all 3,5 € B

|Ge®) - Grd)| = ae||p - 5]
|Pr(8) = De(B)| < |5 - 5

IGp(B)Il <M, [IDp(B)]| < M.

Y

Assumption 8. The following conditions hold uniformly over P.
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1. There exists estimator D(B) such that

D(8) = Dp(8) | = or(1).

sup
BeB*

2. For all € > 0, the estimator G(B) satisfies

liminf inf P | sup sup Hé(ﬂ) — GP(B)H <e| =1
n PecP m>n 6€E

Assumption 7 imposes that the derivatives Dp and G p are sufficiently smooth in their

arguments, and Assumption 8 requires consistent estimators for the Jacobian Dp and Gp.

Under these two assumptions, we can approximate the Taylor expansion in (60), (62),

(63) with feasible analogs.

Assumption 9. For some constants w > 0, € > 0, all distributions P € P satisfy the

following condition. Let

Ep[m; (Xi; B, ¢p)]
Op,j (ﬁ? QOP)

e ={ic i n) > e}, (65)

u, b, J1+1,...,J1 + J. if T > —c
e D (6)
{k, h+1,...,J1 + Jo} otherwise

where
)\P,K (57 (PP) - >\P,u (B> SOP)

0P = tax{ope(B), opu(B), orue(B)}

Then for k ={,u,

Inf cig (Capseugpss) = w,

where eig(X) is the smallest eigenvalue of 3.

Note that J1(P, 5; )UJk(P, ;) is the collection of moments that are close to binding.
Assumption 9 imposes that the covariance matrix for those moments is non-singular. In
Assumption 11 in Appendix D.2, I relax this assumption by allowing the covariance
matrix of paired moments to have a singular limit at the cost that the sum of two paired
moments should be non-positive for all samples. This is an analog of Kaido et al. (2019)

Assumption E3.2.

Theorem 4. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9
or 11 holds. Let 0 < aw < 1/2. Then

liminf inf inf POeCl,)>1-a.
n—reo PGPGGU/BEBI:)\P,Z([_}))\P,U,(B):I
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Assumptions 10, which is a regularity condition for the moments, can be found in
Appendix D.2.

5 Simulation

In this section, I study the size and power properties of the proposed procedures and

compare them to several alternatives.

5.1 When B is Finite

When B is finite, I conduct simulations in the context of Example 1, i.e. relaxation of
the parallel trends assumption as in Rambachan and Roth (2023). Besides the modified
conditional confidence interval proposed in Section 3, I consider two existing procedures
for union bounds: (i) the adjusted bootstrap in Ye et al. (2023), (ii) the simple confidence
interval in (14), and (iii) the inference procedure in Rambachan and Roth (2023)."" All
three methods are uniformly valid. All tuning parameters are set at the values in the
papers in which they are proposed.

Each sample {Y;}_; and estimator is generated by

1
Yin N(y,n%), 4==> Yi~N(y,%).

n

The inference is conducted using the pair (4, %). The covariance matrix ¥ is calibrated
from the empirical results reported in (i) Dustmann et al. (2022) Figure 7(c), (ii) Benzarti
and Carloni (2019) Figure 2(E), (iii) Lovenheim and Willén (2019) Figure 3(A), and (iv)
Christensen, Keiser, and Lade (2023) Figure 5(b). Specifically, ¥ is set to be the estimated
covariance matrix for t = —T1',...,—1,1, where T is reported under Figure 3. For each
Y, I considered three true values for : (i) the parallel trends assumption holds, i.e.
vPT¢ = Or; (ii) there is a small violation of the parallel trends, where 477¢ is calibrated
from the same source as ¥; (iii) there is a large violation, where v7"¢ = (100, 07-1),
op = maxpep {opp}. Without loss of generality, I normalize 77" = 0 in all DGPs. In
sum, I consider 4 x 3 = 12 empirically motivated DGPs. Note that the simulation results
of the modified conditional CI, the Rambachan and Roth (2023) CI, and the simple CI
are invariant to n, while YKHS depends on n because of a subsampling step. In this
simulation, I set n = 5000 and S = 1000 sample draws.

In Figure 3, I plot the rejection rate near the upper bound. The lower bound is

1Ye et al. (2023) propose two CIs for the parameter of interest in their Algorithm 1 equation (15):
one with the tuning parameter m/N — 0,m — oo and the other with m = N. The second one is not
uniformly valid, and thus I only consider the first one with m = N/log(log(/N)) as suggested in their
Section S1.4. For Rambachan and Roth (2023), T use their hybrid conditional CI with tuning parameter
n = {5, which is the default choice in their code.
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similar and thus omitted. The horizontal axis is the value of 8, while the vertical axis is
the rate that € is not included in the CI. The asterisks represent the identified set, and
the nominal rejection rate is 10%. The modified conditional CI is the red curve and it
has proper size control in all simulation designs. The simple CI is the black dotted curve
and it has significantly lower power than modified conditional CI in all designs.

Rambachan and Roth (2023) CI is plotted in blue dashed curves. The performance of
Rambachan and Roth (2023) varies with the DGPs, and the power is usually between the
modified conditional CI and simple CI, see e.g. Figure 3a, 3b, and 3d. In some DGPs,
Rambachan and Roth (2023) may perform worse than the simple CI, e.g. in Figure 3g.
When there is only one large violation, for example in Figure 3i-3l, the minimum and
maximum of the union bound are well-separated from other bounds, and Rambachan and
Roth (2023) is near optimal by their Corollary 3.1. In this case, the modified conditional
CI has a slightly smaller rejection rate and is close to optimal.

YKHS is plotted in green circled curves. YKHS has slightly higher power than the
modified conditional CI for points very close to the identified set but often suffers from
large power loss for points farther away, see e.g. all designs except Figure 3¢ and 3g. This
is consistent with the slower convergence rate of the YKHS CI to the identified set and
Theorem 3.

In Table 3 in Appnedix A.2, I report the median CIs.!? I compare the differences
between the length of median CIs and the length of the union bound estimates, as a
measure of efficiency.’® The difference of the modified conditional CI is the shortest,
or slightly larger than the shortest, in all DGPs. It significantly reduces the value of
Rambachan and Roth (2023) (resp. YKHS, simple CI) by a proportion up to 43% (resp.
32%, 37%).

5.2 When B is Infinite

When B is infinite, I use the setting of the simulation in Dickstein and Morales (2018).
Consider a simple trade model with ¢« = 1,..., N firms deciding whether to export to a

foreign market f, f =1, ..., K. The revenues in home and foreign markets are determined
by

r, = X1+ Xo + X,
Ty = QsTh+ €.

12 A median CI is the median lower bound of the 1 — o CI to the median upper bound, and the median
is taken over S samples.

13The consistent union bound estimate is |minyep Aeh, MaAXpeB )\u,b]
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Table 1: Simulation Results unknown B with a = 0.1

# markets Identified Set Calibrated Projection CI (%) Bonferroni CI (%)
Median CI Coverage Median CI Coverage
K=1 [2.344, 5.359] [0.247, 10.176]  [99.8, 99.7] [0.178, 11.457] [100, 99.9]
K=4 [2.344, 5.359] [0.233, 10.226]  [99.8, 99.8] [0.161, 11.559] [100, 99.9]
K=38 [2.344, 5.359] [0.237, 10.356]  [99.9, 99.7] [0.158, 11.682] [100, 99.9]

The expected profit of export is given by
pr=n"tE[r;| I - B — By,

where 7 is the elasticity, J is the information set the firms have when making the export
decision, and (X, Xs, X3,v) ~ N (0,Z,). Then the decision is given by

= 1[0 'E sl T Br — B2 > v]

where ; = 51_ LBy = Bl_ 132. This reparameterization is just for simplicity. The re-
searcher observes (X,rp,d,dry) and a subset of the information set Z C J. The pa-
rameters are (¢y, 01, 82), and n = 2 is known to both the researcher and firms.'* The
counterfactual of interest is the change in the number of exporters if the information set
changes from Jgman = {X1} t0 Jrarge = {X1, X2, X3}. The details of moment conditions
and counterfactual outcomes are given in Appendix B.2.

In this simulation, I set the sample size NK = 2000, and the simulation is based
on S = 1000 sample draws. The nominal rejection rate is @ = 0.1. The true value is
(B1,B2) = (1,0.5) and ¢y = 0.5 for all f =1,..., K. In Table 1, I report the calibrated
projection CI using the inference proposed in Section 4, as well as a Bonferroni type CI
defined as

CI% = | min A(8,¢) — @71 (1— D)au(B),  max A,(8,8)+ 07 (1-2)au(8)],
BeB,_g 4 BeB,_g 4
where gl_% is a 1 — 5 confidence set of B calculated based on D. W. K. Andrews and

Soares (2010). This Bonferroni CI is a valid alternative to the new CI, but less efficient,
especially when the dimension of 3 is large. Both the Bonferroni CI and the calibrated
projection CI have proper coverage, but the length of the calibrated CI is smaller than
the Bonferroni CI.

4Note that this is in fact a normalization since 7 and 3, cannot be identified separately.
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6 Empirical Illustration

6.1 Sensitivity Analysis for Effects of the Minimum Wage

In this section, I apply the modified conditional CI to the sensitivity analysis in Dust-
mann et al. (2022). The authors study the labor market effects of the minimum wage
implemented by the German government in January 2015, impacting approximately 15%
of the workforce. The minimum wage policy remains a subject of considerable controversy
within the labor market, as it simultaneously addresses wage inequality while potentially
leading to disemployment. One main conclusion of Dustmann et al. (2022) is that the
minimum wage increase resulted in higher wages without causing a decline in employment
levels.

To study the employment effect, the authors estimate the DiD design

2016

log(emp,,) = Z VGAP, L[t =t + o, + & + e (67)

T=2011,7#2014

where log(emp,,) is the log employment in district r, time t; GAP, is a measure of
the exposure to the minimum wage; «, and & are district and year fixed effects. The
parameter vector 7y is the event study coefficients with 9914 normalized to zero. Figure 4a
shows the estimated coefficients {4, } from specification (67). Under the parallel trends
assumption, the high and barely exposed districts evolved at the same rate in the absence
of the minimum wage policy. In this context, the coefficients 9015 and 72916 in the post-
policy years serve as measures for the employment effects of the minimum wage policy.
However, Figure 4a indicates that the coefficients 9011, V2012 and 7013 in the pre-policy
years are not statistically or economically indistinguishable from zero. Hence, it is evident
that the parallel trends assumption does not hold. Consequently, the authors conduct
sensitivity analysis using Rambachan and Roth (2023), as detailed in their Appendix
A.14.

In particular, the authors conduct the sensitivity analysis using the second differences

relative magnitudes (SDRM) relaxation. This approach assumes that

|(52015 - ’72014) - (’72014 - ”72013)| < Mszzl(%%,)zimg |(’Ys - %71) - (%71 - %72)| )

where £5915 represents the potential differential trend without the minimum wage policy.
Essentially, without the minimum wage policy, the slope change at ¢ = 2015 is bounded
above by a factor of M times the previous slope changes. M measures the level of
relaxation. This aligns with the approximately linear pretrend observed in Figure 4a. The
employment effect of interest is quantified as y2915—&2015. That is, with one unit increase in

GAP and other covariates fixed, the employment rate will increase by 100(7y2015 — £2015) %
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Figure 4: Empirical [llustration for finite B with o = 0.05

in expectation.

In Figure 4b, I report the 95% confidence intervals for different values of M constructed
based on three different methods: the modified conditional CI proposed in Section 3, the
hybrid CT in Rambachan and Roth (2023), and the simple CI in (14)."> We can clearly
see that the modified conditional CI is the shortest and the simple CI is the widest for
all M, and the improvement of the modified conditional CI upon the simple CI doubles
the improvement of Rambachan and Roth (2023) upon the simple CI.

The authors compare the minimum wage induced disemployment effects and wage
effects. To do so, they estimate the wage effect using the same DiD design as (67) with
regressor log(wage,,). After adjusting the linear pretrend, the point estimate of the wage
effect at t = 2015 is 0.6, represented by a dashed line (with an inverse sign) in Figure 4b.
The authors are interested in whether the employment effect is robustly higher than —0.6,
leading to an employment elasticity with respect to own wage less than 1 in absolute value.
When using the natural benchmark M = 1, only the modified conditional CI is above
the negative wage effect. It is also informative to report the “breakdown” relaxation at
which the wage effect is no longer larger than the (negative) employment effect. In this
case, the breakdown M for the hybrid CI is around 0.75, while the one for the simple CI
is around 0.6. Remarkably, the breakdown relaxation M of my method is 33% to 66%

larger than the other two.

6.2 Counterfactual Analysis for Exporter’s Information Set

Dickstein and Morales (2018) study how the information possessed by potential exporters
influences their export decisions. A challenge in modeling firms’ decisions lies in the fact

that these decisions are contingent upon firms’ expectations of export profit, which are

15The estimated coefficient and covariance are available but the data for regression is confidential, thus
I can not implement the Ye et al. (2023) bootstrap procedure.
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rarely directly observable by researchers. Previous literature often makes the strong as-
sumption that firms’ expectations are rational and depend on a set of variables available in
the data, which carries the risk of model misspecification. Different from earlier research,
Dickstein and Morales (2018) do not require full knowledge of an exporter’s information
set. Instead, they specify only a subset of the variables that agents use to form their
expectations. The trade-off of this approach is that it results in partial identification
of the structural parameters and counterfactuals. The empirical results show that, on
average, the number of exporters decreases when firms have access to better information.
However, this change varies with firm size.

The model details are given in Appendix B.3. In this model, the structural parameter
B is partially identified by moment inequalities as in (40) with J; = 48, Jo = 0. The
moment conditions contain 220 plug-in estimands ¢p;,...,0p220, With each corresponding
to a specific market. The plug-in estimands are determined independently of the moment
inequalities. The counterfactual of interest, denoted as 6, is the percentage change in the
number of exporters if the information set changes from the smallest available to perfect
foresight. The smallest information set includes the firm’s own domestic sales in the
previous year, sectoral aggregate exports in the previous year, and the distance variable.
Given a specific structural parameter [, there exists a point-identified pair A\,(5, ¢p) and
Au(B, pp) that bounds the counterfactual outcome.

The original 95% CI in Dickstein and Morales (2018), denoted as CTPM!8  is computed

as follows:

~

CIPM8 — | min A\(f), max A,(B)
566170 668170¢

Here B;_,, is a 1—a confidence set for 5, calculated based on D. W. K. Andrews and Soares
(2010) treating the estimator ¢ as the true value. This interval is reported in the first row
in Table 2, and it gives statistically significant results in all three subsamples. However,
CIPMI8 does not account for the estimation uncertainty in A, A, and ¢, making it
potentially invalid. Additionally, it is unclear how C'TPM!® compares to the new confidence
interval. On the one hand, CTPM!® lacks validity and may be too narrow; on the other
hand, it is a projection of the confidence set l’;’l_a, which can be unnecessarily wide.
To decompose these two effects, I first validate CIPM!® by appropriately adjusting for

estimation uncertainty with

; . N _ ay . N - Q.
CIPMIBadl — | min )\ (B) — (1 — Z)O’g(ﬁ), max A, (B) +® (1 — Z)Ju(ﬁ)
ﬁEBlf% 565‘117%
Here BA%_% is the 1 — 5 confidence set of 38 that takes into account the estimation un-

certainty in ¢. CIPM#adi employs the same projection method used in Dickstein and

Morales (2018), but with a Bonferroni-type adjustment, ensuring its validity. This inter-
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Table 2: Percentage Change in Number of Exporters, a = 0.05

Firm All Large Small
DMI8 [10.2, 6.1]  [-17.3,-12.7] [0.3, 0.5]

- DM18 - Bonferroni ajusted [-22.9, 1.5] ~ [-30.4,-0.8] [-0.1, 1.4]
New 204, -1.6]  [-27.4,-87] [0, 1.2]

val is reported in the second row. CIPM!®adi js considerably wider and crosses zero for
all-firm and small-firm samples. In the third line, I report the new CI calculated by the
calibrated projection method proposed in Section 4. The calibrated projection method,
which is not only valid but also more efficient, is shorter than C7PM82dl and restores
statistical significance, signing the effect of the change in the number of exporters under

perfect foresight.

7 Conclusion

In this paper, I propose inference procedures for a target object whose identified set is
a union of bounds. When the union is taken over a finite set, I introduce a novel mod-
ified conditional CI based on a truncated conditional critical value, which significantly
improves upon existing procedures over a large set of DGPs. Empirical examples include
sensitivity analysis in DiD and RDD, bunching strategies to identify the elasticity of
taxable income, and misspecification in instrumental variable models. When the union
is taken over an infinite set, I propose a calibrated projection CI, which is computation-
ally attractive and applicable to structural counterfactual analysis in general moment
inequality settings.

There are a few directions for future work. For finite B, the important tuning pa-
rameter a trades off the rejection rate between less and more favorable DGPs, and the
suggested rule of thumb value is %a. It would be useful to consider a choice of a¢ that
optimizes some objective function, for example, weighted average power. In addition, the
idea of modified conditional inference could potentially apply to other non-standard infer-
ence problems like directionally differentiable functions. This idea does not impose shape
restrictions, e.g. convexity, on the null space. Lastly, for both finite and infinite B, my
inference procedures assume a correct specification that the union bound is non-empty.
If the model is misspecified, the confidence interval can be an empty set or spuriously
short. It would be interesting to consider misspecification robust inference for general
union bounds, in the spirit of Stoye (2020) and D. W. K. Andrews and Kwon (2023).
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Appendix

A

Additional Results for Finite B

A.1 Implementation Details

Below I give a step by step implementation algorithm.

1.

Input 5n, Qn, a, af, A, Ay, n, €, where € is the computational tolerence. I suggest using
af = %oz and n = 0.001.

Construct a 1 — 1 confidence set A for 6:

A= {(Ag(s, Au) eA;aeA}, (68)

where @; = 1/€Q;; and

o}

with Z* ~ A <o,diag(Q)—%Qdiag(

)-%).

. Calculate é:

(a) Initialize c=0,¢=®"1(1 - %).

(b) Let ¢ = (¢ + ¢)/2 and calculate

p = inf p(c, (Aed, Aud)).
seA

Ifp<a,c=cifp>a,c=c.

(c) If ¢ —c > e, go to 3b;
Ife—c<eg et =(c+e)/2.

4. Construct the confidence interval by a grid search over an outer set of CI" given in (10).

(a) Initialize § = minyep, 5\(7[, — &1 — )6y
(b) Calculate T'(9) and é"(6; ).
(c) IET(0) > &™(6; ), let 6 = 0 +«.
o If 0 < maxpep, S\U,b + ® (1 —n)6u Go to Step 4b

o If 6§ > maxyep, j‘u,b + ®~1(1 — 7)64p. The confidence interval is CT™ = §), exit
the algorithm.

If T(0) < é™(; ), 6, = 0.
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(d) Initialize # = maxpep, Aup + @11 = 7)Fus.

(e) Calculate T'(0) and &™(6; ).

(f) It T(0) > é™(0; ), 8 = 0 — e. Go to Step 4e
If T(0) < é(0; ), O = 6.

5. The confidence interval is CI™ = [0y, 02].

It is possible for the confidence interval to be empty, indicated by an output of . This can
occur when the model is misspecified and the lower bound exceeds the upper bound. How-
ever, if the realized minimizer is consistently smaller than the maximizer, which is the case in
Rambachan and Roth (2023), Kolesar and Rothe (2018), and Masten and Poirier (2021), the
modified conditional confidence interval is non-empty. It would also be interesting to consider
misspecification robust inference for general union bounds, in the spirit of Stoye (2020) and
I. Andrews et al. (2019), but this is outside the scope of this paper and I leave it for future

research.

A.2 DMore Simulation Results

Median Confidence Intervals

In Table 3, I report the median CIs.'® In the second row of each panel, I report the dif-
ferences between the length of median ClIs and the length of median point estimates, i.e.
[maxbeg ;\g7b, maxpep S\U,b:|- The difference is a measure of the efficiency, net of the effect of
identified set length. The difference of the modified conditional CI is the shortest, or slightly
larger than the shortest, in all DGPs. It reduced the value of Rambachan and Roth (2023)
(resp. YKHS, simple CI) by a proportion up to 43% (resp. 32%, 37%), see third panel with

small violation (resp. fourth panel with parallel trends, fourth panel with parallel trends).

Different Values of o€

In Figure 5, I report the rejection rate with three different values of o € (5, a). The rejection
rates are not overly sensitive to the tuning parameter o, and under all choice of af, the rejection
rate of modified conditional CI is higher than the simple CI. We can also see that a° trades
off the power under more and less favorable DGPs. When the bounds are well separated, e.g.
Figure bi - 51, the rejection rate increases in a°. In contrast, when the bounds are close to each

others, e.g. Figure 5¢ and 5g, smaller o gives higher power for alternatives closer to the null.

Different Sample Sizes

The sample is simulated from

Yii = Zfsl[t = s|D; + &x,1 X1t + Ex 2 X0 + €it, (70)
s#0

16 A median CI is the median lower bound of the 1 — « CI to the median upper bound, and the median
is taken over S samples.
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Table 3: Simulation Results for known B - Median CI

Point Modi. Con. RR23 YKHS Simple
Dustmann et al. (2022) T =3
Parallel Cl  [-0.188, 0.188] [-0.470, 0.456] [-0.505, 0.492] [-0.486, 0.502] [-0.578,0.565]
[0,0] Diff. 0.550 0.621 0.612 0.768
Small Vio. Cl  [-0.196, 0.195] [-0.467, 0.475] [-0.504, 0.505] [-0.492, 0.504] [-0.576,0.581]
[—0.080,0.080]  Diff. 0.551 0.619 0.605 0.766
Large Vio. Cl  [-2.508, 2.503] [-2.857, 2.852] [-2.840, 2.836] [-2.955, 2.995] [-2.920, 2.916]
[-0.316,0.316]  Diff. 0.698 0.666 0.939 0.825
Benzarti and Carloni (2019) T =4
Parallel Cl  [-0.028, 0.029] [-0.058, 0.059] [-0.067, 0.067] [-0.070, 0.074] [-0.075, 0.075]
[0,0] Diff. 0.061 0.077 0.088 0.093
Small Vio. CI  [0.085, 0.085] [-0.120, 0.119] [0.121, 0.122] [-0.130, 0.140] [-0.130, 0.130]
[—0.080,0.080]  Diff. 0.069 0.073 0.101 0.090
Large Vio. Cl  [-0.316, 0.317] [-0.359, 0.354] [-0.358, 0.354] [-0.374, 0.368] [-0.368, 0.363]
[-0.316,0.316]  Diff. 0.080 0.079 0.109 0.098
Lovenheim and Willén (2019) T =9
Parallel CI [-0.909, 0.884] [-1.886, 1.867] [-2.341, 2.343] [-1.709, 1.800] [-2.235, 2.236]
0 € [0,0] Diff. 1.960 2.891 1.715 2.678
Small Vio. CI  [1.360, 1.354] [-2.261, 2.225) [-2.927, 2.893] [-2.193, 2.194] [-2.590, 2.567]
[—0.993,0.993] Diff. 1.772 3.106 1.673 2.442
Large Vio. Cl  [-9.366, 9.332] [-10.034, 10.174] [-0.999, 10.128] [-10.201, 10.483)] [-10.153, 10.323]
[—9.350,9.350]  Diff. 1.509 1.428 1.985 1.778
Christensen et al. (2023) T =15

Parallel CI  [-0.108, 0.108] [-0.197, 0.195) [-0.225, 0.227] [-0.233, 0.242] [-0.247, 0.249)
[0, 0] Diff. 0.176 0.236 0.259 0.280
Small Vio. Cl  [-0.279, 0.281] [-0.391, 0.409] [-0.391, 0.405] [-0.431, 0.445] [-0.416, 0.434]
[-0.276,0.276]  Diff. 0.240 0.236 0.316 0.290
Large Vio. CI  [-0.932, 0.933] [-1.040, 1.029)] [-1.036, 1.025] [-1.084, 1.064] [-1.062, 1.047]
[-0.934,0.934] Diff. 0.204 0.196 0.283 0.243
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Table 4: Rejection Rate (%) Under Different Sample Sizes av = 0.1

¢ Parallel Trends Small Violation Large Violation

)y Yo Yo X3 Xy Yo o Ye X3 Yy DD N DA W
n =125 1.3 22 0 09 3.4 37 55 11.3 103 11.9 9 10
n = 500 1.2 15 0 1.1 4 58 88 9.2 85 86 86 94
n = 2000 16 2 0 1.1 83 89 94 84 92 86 97 98

with i =1,...,n,t =1,....,T. Let E[D] =r = 0.6, X1t ~ N(0,1), Xo it ~ t(5), e; ~ N(0,%;)
and X, = X/YSppr. E[€] and ¥ are defined as in Section 5.1, and E[¢x] = 0. I consider three
sample sizes, n = 125,500,2000. The maximum rejection rate of 6 in the identified set is

reported in Table 4. There are only slight over rejection with n = 125.

A.3 Potentially Non Connected Union Bounds

In this section, I illustrate how to apply the modified conditional inference idea to potentially

non-connected union bounds defined by

0 € Neps Aupl-
beBB

The confidence interval is constructed by inverting the test of the hypothesis
Hp:minmax {Agp — 6, 0 — Ay} <0.
bEB b b
The corresponding 1 — « confidence interval is

CI™ (A, S ) = {9 L T(0) < &™(0; a)}.

I illustrate with a normally distributed estimator \, = <;\g,5\u) satisfying (8). To simplify
notation, assume that 6 € [Agpe, Ay pe)-
The test statistic is defined as

. Aep—0 02X,
T'(0) = min max { &b b } .
beB

)
Oeb Oub

The simple CI uses the same test statistic and a simple critical value ¢5™ = &~1(1 — $), which

gives confidence interval

CISim = U [Aé,b — Ug7bCSim, )\u,b + O’u,bCSim} .
beB

The simple critical value is conservative because

P (T(e) > o1 - %))
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Aep— 06—,
=P (minmax{ CLES ’b} > (1~ a)>
beB O¢b Ou,b 2
My — 00— dype
<P (max{ Lb , b } > o711~ a)>
00 Oub* 2

Nppe — 0 0 — \yp
<P <M><I>1(1—;)>+P()\“’b ><1>1(1—;‘)>
+

Ou,b

The first inequality is conservative if the bounds are not well separated, i.e. the Hausdorff
distance between bounds is much larger than the standard deviations. The third inequality is
conservative if the bound is relatively large. However, ¢5™ is not overly conservative under the

less favorable DGPs where the bounds are well separated and short, i.e.

bégl\l{lzl)*} ([Aepss Aoy [Meps Aup]) >>Tgleaé‘:{(7£,b70'u,b}a 0b ub (71)

Under the less favorable DGPs in (71), the probability

5 Aeye =0 0 — Ay
P (T(G) = max{ &b , b })
T4+ Ty, b*

is close to one and therefore, I will construct the conditional critical value based on

T(0) ‘T(G) = 24 or T(0) ‘T(O) = Zuy .

Specifically, let

(0,0 o (ac® (104(0,0)) + (1 - a)® (120,0))) i 2> 2,
C ,O[ = . ’ ) )
o (a® (11(0,0)) + (1 - 0)® (12(6,0))) i 2,5 < 2,
where
-1 ~ )
(0.t — M (14 pu®:8) (2,54 pu®b.D)Zes)  if ming_g, prud, > -1
- if mingegz pgu(b’ b) =1
. g _1 ~ . . ~
tu71(97 b) _ mlnl}eéu (1 + plu(by b)) (ZZ,E + PZu(b, b)Zu’b> if mlnBeBu pgu(b, b) > —1

—00 if ming pgu(l;, b) =—1

tr2(6,b) =min¢  min ~)
bEB(b)\Br(b) 1 — pe(b, D)

_min max
beBZu(b)
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ty2(0,b) =min<  min wh
beBL(B)\Bue(6) 1 — pu(b,D)

{ ZU’E - pu(bu E)Zu,b Z&E + pug(g, b)Zu,b } }

_min max
beBul(b)

with

The modified conditional critical value is defined as
™ (0; ) = &™(0,¢"(0); a) = max {¢°(6,a°), ' (0) } .

The lower truncation ¢' as the minimum value that achieves uniform size control, i.e.
@) =inf{ceR;y: sup p(c;0,)\) <a
AEA(0)

where Ag is the set of feasible A satisfying Hy:

Ao(0) = < (A, Ay A:min), <6 < Aub ¢ -
0(0) {( 0 M) € min Agp < 6 < max ,b}

A.4 Violation of Assumption 4

As previously mentioned, when Assumption 4 fails, we can rewrite the union bounds as the
union of several sub-union bounds, with Assumption 4 holding in each sub-union bound. Then
we can apply the union principle by taking the union of ClIs for each sub-union bound to get a
valid CI for 6.

Example 9. Assume that B = {1,2}, Ay = [ T 09x2 }, A, = [ O2x2 T }, and

1 1-1
Q=|1-2 1

Loxo

In this case, the limit of €, is singular and consequently Assumption 4 fails. However, we can

write

RS [min {/\@71, )\572} , max {)\u,ly )\u,QH =0,U0B6,
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where 51 = (61,53,54)/, 52 = (52,53,54)/, Q,}L = Q?L = 1-3,

01 =M1, max {1, \u2}] = [minflg 0L, max A, b51] ,
’ ’ ’ beB 7 beB ’

O2 = [Ar2, max {Ay 1, Auz2}] [Iggg Lb 715163‘5( b ]7

Ap=1 loyg1 Ooxo } ; Ay = { O2x1 72 } .
—~m,1
Therefore, Assumption 4 holds for ©1 and ©5, and we can get uniformly valid 1 —a CICT
i 72 . . . jions 71 s 72 . . .
cr separately. Then, it is easy to verify that CI MUCr s a uniformly valid 1 — « CI for
f, though at the cost of a potential efficiency loss. O

A.5 TUnion Bounds in Rambachan and Roth (2023)

Consider a simple panel data model ¢t = —T',...,T. Let v € RZ+T be a vector of “event study”

coefficients, which can be decomposed as

pre gpre
Y= ,Ypost - T+ gpost ’

The target object §# = (/7 is the weighted average of ATT of post policy years, and ¢ is a bias
from a difference in trend. Here &P"¢ = ( Y ...,§€T16>, £post — (ffOSt, ...,§¥5t> and v = &' is
normalized to zero. In this section, I show that under relative magnitude relaxation and second
differences relative magnitude relaxation, the identified set of the target object is a union bound.
Relative Magnitudes
Under the relative magnitude relaxation, we assume that the violation of parallel trends at

time ¢ > 1 is bounded above by the maximum pre-policy trend difference

t t
e — | < max_ [&55 - &, (72)
Note that
gifost 1 ngSt
post post post post post
2 51 + 51 11 52 o 51 t
é’post = ' — ‘ . — [ APOS
t £ t t t t t
] f%os - 5%0_51 4ot fgos o éqloos + f;fos ] i 11 --- 1 | g%os - 5%0_81
where ~ _
1 fgfost
post post
L 11 At _ | 2T &1
post _ post
R S
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The parameter of interest is

LI (,ypost _ gpost) — L/’YPOSt _ ML/LApost
€ [L/VPOSt -M |L/L} 17><1A’ L/’}/pOSt +M }L/L‘ ITxlA] )

where |//L| is the vector of absolute value of each element in /L, where

e pre
A=, max | Je - &
Let
pre pre
&171 - éfz
/ 17
Ap?"e B : 5 - L 71?05
B ’ ~— APre ’
g}irle _ 5;_77"23 e
pre pre B
o —&

And we have

fc| min A max A
b1, or BV oo b

where
A = Ay = A6,

1py1, M|/L|1g5, Ir
1py1, —M|J/L| 15, ,Ir

A:

Second Differences Relative Magnitudes
Under the second difference relative magnitude relaxation, we assume that the violation of

linear trend at time ¢ > 1 is bounded above by the maximum pre-policy linear trend violation

|(& — &t—1) — (&e—1 — &1—2)| < M max [(€s41 — &) — (& — &s—1)] - (73)

Fort > 1, let

Ay = (& — &—1) — (§-1 — &—2)
and it is easy to get

t
§—&=—61+ ) A,

j=1
t k
S et YT
k=1 j=1
Fort=1,...T, let
tt+1
Ly = (2+ )7 H =t
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The target object is bounded by

1 / !
Jr= ,Ypost — gpost

€ [/yPt + VHE L — VLMA, /AP + /HE y + /LMA]

In this example,

fe| min Mgy, max Ay
b=1,..20 7 b=t "

where

Ao = Ay = A,

1, /LMZppre_, ]

AZ = Au =
1, /LMZgwre_q

L,’YPOSt + L/Hf,1

A _qoress
Ao
B Additional Results for Infinite B

B.1 A Modified E-A-M Algorithm based on Kaido et al. (2019)

Kaido et al. (2019) provide an E-A-M algorithm to improve the computational efficiency of the
grid search. For completeness, I provide below the full version of the E-A-M algorithm. This
follows closely from Kaido et al. (2019), with the main difference in the M step.

I illustrate with the upper bound of the CI, and the lower bound is symmetric. The goal is

to solve the optimization problem

5 ou(B) . Vi (8) _
sup Ay () + en(B), s.t. — < én(B).
BeB Vn ;(B)
Initialization: Draw randomly (uniformly) over B a set (6(1), e ,B(’“)) of initial evaluation

points. Evaluate ¢, (5(4)) for £ =1,...,k — 1. Initialize L = k.

E-step: Record the tentative optimal value
~ *, L
j\u *,L UU(B ) An *,L
(65%) + — ¢ (8°%)

e {5\“(6(@)) N &u\(/ﬁg))

en(BY) e {1,...,L},5(8Y) < ¢, (B“)) } ’

with g(ﬁ) = max;=1,..J %ﬁj)(ﬁ)
A-step: Approximate 3 — ¢é,(5) by a flexible auxiliary model. We use a Gaussian-process

regression model, denoted by a mean-zero Gaussian process ((+) indexed by /5 and with constant
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variance ¢2:

vO = pt¢(p9), =1L,
Corr (¢(8),¢ (8") =K, (8- 8), B, €B,
where YO = ¢, ([3((5)) and K, is a kernel with parameter vector v € ngl [Yhsn] C RYL,.

For instance, K, (8 — ') = exp (— ZZ=1 |8, — [3;1]2 /’yh>. The unknown parameters (u,gQ)
can be estimated by a GLS regression of Y = (Y(l), e ,Y(L))/ on a constant with the given

correlation matrix. The unknown parameters y can be estimated using a (concentrated) MLE.

The predictor of the critical value is given by

cr(B) = p+r(B)RNY — jil),

where rz(f8) is a vector whose ¢ th component is Corr (C(B),C (ﬁ(e))) as given above with
estimated parameters, and Ry, is an L-by-L matrix whose (¢, ¢') entry is Corr (C(B(Z)), ((5(”)))

with estimated parameters. The uncertainty left in ¢,(-) is captured by the variance

m—1 2
623%(6) =¢? (1 - rL(ﬁ)/RZII‘L(ﬁ) + (1 -1R} rL(/B)) ) '

1R "1
M-step: With probability 1 — €, obtain the next evaluation point S+ as

BEAD ¢ arg maxEp(6)

BeB
3 _ *,L —n"34 *,L é *, L
= arg ma () (ab(x*(ﬂ))esmm(“(ﬁ) L L >+cL<ﬁ>><b<

where E7(5) is the expected improvement function and

N %, L n_%& 5L)a Ly A
#(8) = (ésu(8)"! (CLw)_maX {w), 3u(8) + n 1ol M)eal8H) Auw)})

Gu(B)

This step can be implemented by standard nonlinear optimization solvers, for example, MAT-
LAB’s fmincon. With probability ¢, draw £+ randomly from a uniform distribution over B.
Set L «+ L 4+ 1 and return to the E-step.

B.2 Simulation Detalils
Following Dickstein and Morales (2018), ¢ = (¢1, ..., px ) is identified by

_cov(ry,rpld = 1)
LA (rpld =1)

= o1 (E [my,(W)]),

where
T _ a] — azaq
2 (a17a27a3>a4) - 9
az — ay

msof(W) = (drhrf/,dri,drf,drh) 1[f/ = f].
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Importantly, (f1, f2) is partially identified by the set of moment conditions:

1—® (ntopraB — B2)
@ (n~tpsrnpi — Ba)
. o ® (n~tpprrbr — B2)

ma (W 8,¢) = —(1—d) 1—d (n—lcpfrhﬁl — B2)

. B o ¢ (ntorraBr — B2)
ms (W38, 0) = (1L=d) (07 pyrafh = o) —dg =0 05 — 55

1 _
ma (W B,9) = —d (n”"pprafy — B2) = (1 - d) 1 jj g(nf{;;f;ﬂl f2232)

m1 (W76790) =—d

+(1—d)

+d

The moment conditions are given by
Elg(Z)®@m] <O0.

The counterfactual of interest for given (3, ¢) is given by

B B E [<I> (T]_ISOfTh/Bl - /32)]
)\f(ﬁa SO) - )‘u(ﬁa @) - E [(I) (n_lg()leﬂl - 62)]

=M (E[@ (17 o1 = B2)] L E [® (07 0 XaP1 = £2)])

-1

where

a
)\T(al, CLQ) = ;2

B.3 Empirical Details with Dickstein and Morales (2018)

All firms located in a country h, indexed by ¢ = 1,..., N, decide whether to sell in each export
market 7 with 7 = 1,...,J. In the first period, firms determine the set of countries to which
they intend to export. In the second period, upon entering a foreign market, all firms optimally
set their prices and realize the associated export profits.

In the second period, the revenue firm 7 would obtain if it were to sell in market j is r;; and
Tij = PiTih T €ij (74)

Firms do not know e;; when deciding whether to export to market j and
Ejileij | Tijsrin, fij]) = 0 (75)

where f;; is the fixed cost and J;; is the information available to firm 7 when deciding whether

to participate in market j. The export profits that ¢ would obtain in j is

_ 1
Tig =10 Tij — fij,
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where 7 is the demand elasticity. The fixed export costs is
fij = Br + Badist; + vij,

where dist denotes the distance from country h to country j, and the term v;;; represents
determinants of f;;; that the researcher does not observe. Firms know f;;; when deciding

whether to export to j at ¢ and
vy | (i dist ) ~ N (0,5)
In the first period, a risk-neutral firm ¢ will decide to export to j if and only if
dij =1 {ﬁflE [ojrin | Tijl B1 — P2 — Padist; > ’Uij/B:a} (76)

where § = (B1, B2, f2) = (é, %, %) and the probability that ¢ exports to j at ¢ conditional on
Jij and dist; is

Eldij | Jij dist;] = ® (07" E [pjrn | Tiji] B — B2 — Badist;) (77)

Moment conditions

Odds-Based Moment Inequalities: For any Z;; C (Jij, dist;), we define the conditional odds-

based moment inequalities as

b ; .
MOb(Z‘--ﬁ o) = B my dij,rfj,dzstj,H
179 2 -

ob . 20 Tt .
mg, dU,Tij,dzst],G

[ —

where r{; = E [p;rin|Ji5] and the two moment functions are defined as

1= @ (0711861 — B — Badist; )
o (n—lrfjﬁl — By — ﬁgdistj)
@ (571581 — B2 — Budist,)

1-a (n*lr%ﬂl — By — ﬁgdistj>

m{(-) = d;;

— (1 —dij),

me () = (1 - dy)

— dy;.
Revealed Preference Moment Inequalities: For any Z;; C (J;, dist;), we define a conditional

revealed preference moment inequality as

m) (diig, 78, dist;; 0
M" (Zije; B,0) = E LA . ’ | Zije| =0,
my,  dije, 5, dist; 0
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where the two moment functions are defined as

(71r 81 — B — Badist; )
<77_17“§’j51 P2 — 53d18tg>
(
o

¢
mi(-) =— (L —dy) (n”'rf;B1 — B2 — Badist, 5
6 (71758 — By — Badist,)
- (77_17”%51 — B2 — Badis j)

) + dij
Z() :dij (77_17“%61 — Py — Bgdistj) + (1 — dl'j) h

Counterfactuals

1. Changes in Information Sets 7. The number of exporter
cl = Z (I) -1 oc 52 — Bgdistj)

where

riy = E [ajrin| Tj]

)

We are interested in the change of exporter numbers 6 = g&{i}

2. Changes in Fixed Export Costs: a reduction in exporters’ fixed costs of 40%. Suppose
Zijt € Jije and, for any 3 € B, define

2 = Zq) n ! Eajrip | Jij| B1 — P2 — Badist;
e —

not point identified

Then,
1 exr B (ZZ]HB)
zi: 1+ B'(Zi;; B) s e s —~ 1+ B"(Zy; )
where
'1 — ( L7081 — 0.6(82 + Bgdzst]))
( 7, 76 90) | Zz 3
j , j
K (n—lr;’jﬁl —0.6(B2 + 53dzstj)> |
B ) = £ | AR )
_1 - (n_lrfjﬂl —0.6(B2 + Bgdistj)>

We are interested in the change of exporter numbers 6 = g&%}

C Proofs for Section 3

C.1 Notation

For simplicity, let B, be a subset of B such that Ay, # Ay, for all by # ba, by, ba € By. If there
is Agp, = Agp, for by, by € B, keep only min{by, by} in By. Construct B, in the same way. For
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instance, if

10 10
Arg=10 11], Ay=1|1 1
01 0 1

then B, = {1,2} and B, = {1,2,3}. Intuitively, B, and B, remove the redundant rows and is
(possibly an outer set of ) the support of by and by,.
For P € P, let p denote the true value of 6, Apy = Asdp, Apy = Audp,

Ope+0pu
Opy =minApyy, Opy = maxApyp, Opm = ——.
T e (Db Thu T A g Abwby TRm 2
Let oy Wy
b 25 ubls
Zs ~ N(O, Qo) , ZZ,b = , Zu,b ot M
00,0, 00,u,b

denote the limiting distribution of

Vn <;\g7b — )\pn,&b) Vn ()\Pn,u,b - 5\u,b)

)

vn (5n - 5Pn) ;

Oup Oub

with Q¢ and P, specified in Lemma 3 and

00,6 = 1/ AepS0AY 4 00.ub = 1/ AupQ04; 4

For k =4, m,u, , let

Ty = in Z, A inZ A 78
& max{rbréllrgl b+ Akep, min wb + ku,b} (78)

be the asymptotic analog of T(Gpmk.), where (Agg, Ajy) are specified in Lemma 3. And let by,
b, be the asymptotic analog of Bg(@k) and Bu(ek), with support By, By:

bre = min < argminZpp + Agep ¢ s
beBy

bku — min {arg minZu,b + )\ku,b} ’
beB,,

By = {b e By: /\kﬁ,b < OO},
B, = {b € By : )\ku,b < OO}

Define the asymptotic analog of (ty1,t2,tu1,tu,2) evaluated at Op, 1 as

~\ —1 ~ ~ ~
min (1 + pralb, b)) (Zug + pea(b,B) Zey + 1], 1 (b, b)) . if minpp(b,b) > —1
tkm(b) = ! beB ’ ’ beB
—0 elsewhere

(79)
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N - .
min (14 p(6,0))  (Zys+ peu®:0) Zup + th, (0,5)) s i mingg(5,0) > ~1
thu,1(b) =  bEB beB

—00 elsewhere

~\—1 ~ ~ ~
Comin (1= pu0,B)) (Zy5 - pe(0,5) Zeg 1] 5(08)) i mings(b,D) < 1
tkw(b): beB:pe(bb)<1 beB

400 elsewhere

- —1 ~ i )
_ min (1 — pu(b, b)> (Zu,B — pu(b,b) Zup + 1, (b, b)) if minp, (b,5) < 1
thu2(b) = { bEBpu(bb)<1 nin

oo elsewhere
where
tLe;(bv b) = Ay + Peu(b, D) At,b
tchuJ(b’ b) = Ao+ peu(b; ) Mo
tL€,2(b’ b) = Arep — pe(b, b) Aiep
tle 5 (b, 6) = Newd — pu(i), b) Meu b

Note that if ‘/\ku’l;’ — 00 and |Aggp| — 00, tlm(b, b) may not be well defined. However, as we

will see later, this case is irrelevant for the proof. Same applies to t,Tm 1 tLe o and t,Tm o- And let

o O (@D (tre1 (bre)) + (1 — o) P (trea(bre))) i Zopy, + Metbre = Zubrn + Mewbr
€ —
O (0D (1 (k) + (1 = ) (tru2(bru))) I Zopyy + Mty < Zubr + Mo
(80)
be the asymptotic analog of ¢¢(6x, ac) . Let
p(c) = max {P (Ty > ¢;'(c) or {T), > cy(c) and T, > ¢;j'(¢)}), (81)
P (T, > ¢} (c) or {T)y, > cp(c) and Ty > ¢*(e)})},
where
P (e) = max {5, ¢}
and Ty, cf, are defined in (78), (80). Lastly, let
d=inf{c>0:p(c) <a—n}, (82)

be the asymptotic analog of ¢ defined (31).

0 1
I use @ for the CDF of N(0,1) and ®y(x1,x2; p) for the CDF of N ([ 0 ] , [ f ]) .
p
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C.2 Proofs for Theorems and Propositions

Proof of Lemma 1.

Proof. Let by satisfy Agp, < 6, and I show that

FOSD
< Unif(0,1). (83)

o (T(G)) —®(te1(0,01)) ..
® (te72(9’ b)) — @ (té,l(a, b1)) HT(G) - szbl}

The proof mainly uses Theorem 5.2 and Lemma A.1 in Lee et al (2016), and below I follow
their notation. For s € B, let

It is easy to see that
{760) = 2o } = |J 14200, <0} (84)

seB

To simplify AsZpp, < bs, note that for all b € B,

Zop, < Zop
= (1 — pg(bl, b)) Zé,bl < Zﬁ,b - pf(blv b)Zﬁ,bl

Zopy < (1= pe(b1, b)) (Zop — pe(b1,0)Z0p,)  if pe(br,b) < 1

0< Zpp — 2oy, if pe(b1,b) =1
and
Zf,bl > Zu,s
S (14 peu(bi,8)) Zopy, > Zus + peulbi, 8)Zep,
Zop > (14 peu(b1,8) 7 (Bus + peu(b1,8) Z0py)  if peu(br, s) > —1
0> Zu,s - Zﬁ,bl if qu(bl, 5) =-1
Therefore,
{AsZpp, < b} ={V7 < Zup, <V IV >0} (85)
where
O peabr,9) T (B + peu(bry ) Zep,) i prulby, s) > 1
| —00 if peu(b1,s) = —1
min (1= pe(b1,0)) " (2o — pe(b1,0)Zep,) if {b € B, py(b1,b) <1} #0
YT = { beBpe(b1,b)<1

+0o0o if {b e B, pg(bl,b) < 1} =0
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! Zp— 2 if e (b 1 and b b) =1
beB:prg%Ill,b)zl( &b tor) if peu(b1,s) > an Igleag(pz( 1,0)

V2 = { i i Zoo— 2o ) Zop — Z if pgy (b1, s) = —1 and b b) = 1
s min be&;ﬁg{b)zl( 0 — Z2001) s 2oy — Zus ¢ if peu(b, s) an r;lgpe( ¢, 0)

1 elsewhere

Note that

2o L {0700 W) )

by construction. We can easily verify that

[te1(0,01),t02(6,b1)] = U 2l
sEB
where t,1(6,b1) and ty2(0,b;) are defined in Lemma 1.
Let

Aoy, — 0 <0

—E[Z,] =
0 (20, P

and F),(x;t1,t2) denote CDF of a N (1, 1) random variable truncated to [t1, 2], i.e.

O(x — p) — Ot — p)
Dty — p) — D(t1 — p)

Then by Theorem 5.3 in Lee, Sun, Sun, and Taylor (2016),

Fu(l‘; tl, t2) =

Fu(Zepgste,1(0,01),t02(0,00) | {AsZep, < bs} ~ Unif(0, 1), (86)
seB

and by Lemma A.1 in Lee et al. (2016), for all z € R,

Fo (z3t0,1(0,b1),t02(0,b1)) < Flu (23t0,1(0,b1),t02(0,b1)) . (87)
Therefore, we have

@ (7(6)) = @ (t4,2(6,51))
® (te2(6,b1)) — @ (te,1(6,01))

~Fy (Zep,5t0,1(0,b1),t02(0,01)) ‘{T(@) = Zﬁ,ln}

FOSD .
= Fu(Zepysten(0,61),t02(0,b1)) HT(G) = Zﬁ,bl}

~ Unif (0, 1)
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Proof of Proposition 1.

Proof. To simplify notation, let

By =

{beBg Aep <0, P(b B)>0},
Buo = {b€Bui Ay 20, P (b=bs) >0}.

Let b1 € By, by Lemma, 1, it holds that

( () > &(0, )‘ (0) = zg,,,l)
(Fo( (0);t0,1(0,01) t€,2(97b1)>
(FM( T(0);t01(0,b1), te2(0, b1)> >1 —a‘T(@) - Zg,bl)

P (Unif(0,1) > 1 — o) = a,

> Fy (¢5(6, @) t,0(6,br), tea(0, 1) | T0) = 24, )

where the second line follows from Fy(x;t1,t2) strictly increasing in z, the inequality follows

from (87) and by construction
Fo (e°(0, a);t0,1(0,b1),t02(0,01)) =1 — «a,

and the last line follows from (86).

Let by € Byp. Similar argument gives
P (T(a) > (0, q) ‘T(a) - m) < a. (88)

Therefore, we have

P (T(e) > &(0,0)| B, Eu)
-y r (T(e) > &(0,0)|T(0) = z&bl) P (T(a) = Zup, | EoU Eu)
b1E€Byo
+ 30 P(T(0) > &(0,0) [7(0) = Zup, ) P (7(0) = Zup| BV )
ba€Buo
<al Y P (T(e) Zy | BCUE ) Yor (T(e) = Zub,| BoU Eu>
b1€Byg b2€Buo
:a7
where the first equality follows from
T) = Z T(0) = Z,
{70 =20},  ATO) =20},
is a partition of Ey U E,, under (23), and the inequality follows from (83) and (88). O
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Proof of Theorem 1.

Proof. By Lemma 3, we only focus on the subsequence s,, and for simplicity, I write n for
subsequence s,,.
Step 1. I show that for all ¢ € Ry,

P (c, AP, S /n) 2y p(e) (89)

where p (c, Ap,, S/ n) is defined in (30) and p(c) is defined in (81). Note that by Assumption
4 and (110), Qn 2 Qo, thus there is 7, = o(1) such that

A~

Q, = Qo+ Op(Tn). (90)

Let

!/

Ay
A,

A
Q0 ¢

-

To show (89), note that for all € > 0,

:QES,HQ—Q()Hng}.

U

P, (‘]5 <c, )\pn,i]n/n) —p(c)‘ > 6)

<P, (‘ﬁ <c, )\pn,in/n) —p(c)’ >e,QO, € Qn) + P, (Qn -4 Qn)

<P, <Es;1£ Ip (¢, Ap,,2/n) —p(c)| > 5) +o(1)

=1 [sup |p (¢, A\p,,2/n) —p(c)| > 5] +o(1),
YeX,

where the first inequality follows from P(A) < P(AN B)+ P(B¢), the second inequality follows
from (90), and the last line is by p (¢, Ap,,2/n) and p(c) are non-random. Thus it suffices to

show

sup |p(c,A\p,,%/n) —p(c)| = 0.
YexX,

To do so, there is a sequence Y,, € 3, such that

lim sup Sup D (¢, Ap,, X/n) — p(c)| = limsup [p (¢, Ap,, Xn/n) — p(c)|
n c2in n

and it suffices to show
lim sup (¢, A, Sn/n) = p(0). (91)

First consider the case when \/n (Ap, u, — AP, .5,) € R along Ap,, note that
9(Ty, T, G, cs,) =1 [Ty > c™(cg, c) or {T,, > c™(cy,,c) and Ty, > c™(cy,, ) }]
is bounded and continuous on D with

P(D¢) = P (Ty = ¢"(cj,¢) or Ty, = ¢™(c,,, ¢) or T, = ¢™(c,,¢)) =0,

mo
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because (i) (1y, T, Ty) is continuously distributed and (ii) Tp L ¢j, Trn L ¢, Tuw L ¢ by
construction. Thus (91) follows from Lemma 4.

Second, when /n (Ap, ub, — AP, ,ep,) — 00 along Ap,, let

B Ay, S /) = max { P (T(\p,.0,) > @ (A, ¢ 0B N Ay Z) ) (92)

P (T(ppa) > @ Opup & 0N (Ar,, ) |
and we have
0 < (e Ap, Su/) = 5 (e Ap, Sa/n) < P (T(On) > & (00 N (A, T0) ) = 0(1)
where the last equality follows from Lemma 4. And
p(c, \p,,Yn/n) = max {P (T(Qn,g) > & (One, c; ), N(Ap,, En)) ,
P (T(Gnu) > (O, ;) N(Ap,, En))}

—max{P (T; > c;*(c)), P (T, > c;'(c)} (93)
=p(c)

(93) follows from continuous mapping theorem.
Step 2. I show that for all £ > 0,

lim sup P, (é’};n <c - 6) =0
n
where ¢* is defined in (82) and ¢}, is defined in (112). Note that by definition
p (é%naAPn, ZA3n/n) <a-—-n
and p <c, Ap,, S / n) is decreasing in ¢. Thus

limsup P, (ép, < ' —¢) =limsup P, ( (c —&,Ap,, n/n) >a—77) =0

n

where the last equation is by
ﬁ(ct—s,)\pn,f]n/n) g>10(ct—5) <a-—mn, (94)

and (94) follows from Step 1 (89).
Step 3. For all € > 0, it holds that

limsupmax{Pn (T(Qg) > (0, Vv { (Om) > & (O, ) AT(0,) > @m(eu,ét)}> )

n—o0

T
Py (T(00) > ¢ (0, &)V {T(0) > & (O, ") AT(00) > (0,8} ) }

= lim sup max {Pn (T(Q@) > & (0y,é") v {T(@m) > & (O, &) A T(9u> > " (Oy, ét)}) ;

n—o0
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B, m(g,,é) v {T(em) > (G, e A T(0) > am(eg,at)})}
gnmsupmax{Pn ( (00) > @ (0, ¢ — &) v {T(e ) > @ (G, — &) AT(0) > (B, ¢t — 5)}) ,
P, (T(e ) > am { s ¢l — &) AT(07) > (0, ¢ — s)})}

+ limsup P, (65% <c - 5)

n—0o0

=p(c' —¢). (95)

Here I omit the subcript P, in 6y, 0,,, 6, and « in é™, é™ for simplicity. Since (95) holds at all

e > 0, we can take a sequence of ¢ — 0, then by Lemma 9,

lim sup max {Pn (T(eg) > (0 a) V {T(em) > (G ) AT(0) > (0 a)}) :
P, (T(eu) > (G, a) VAT (Om) > @ (O a) AT(0,) > E(0r; a)})}

<lim p(c' —¢) = p(c).

e—0

By construction,

p(c') <a—n.

Thus by Lemma 3,
limP, (0 ¢ CI"™) <«
n

Proof of Theorem 2.

Proof. Part I. Symmetric Bounds. Since Ay = A\, and 5\4 = j\u, I will omit the subscript ¢, u in
this proof. Let

= V¥b=1,.,|8|

And the test statistic is

~

7(0) = max {%%ig {20}, min {—zb}} .

Step 1. By Lemma 8, there is o > « such that

/
liminf inf P (& <@ '(1—2)) = 1. 96
iminf inf (C < ( 2) (96)

By Lemma 11, there is o/, > « such that

.. . o AC/p). .C sim/y v . ./ _
lim inf inf P (T(e) > &(0;0) for all § ¢ CIS™(N,, Sy ag)) ~1.

68



Let o/ = min{a),a%} > a, and then (37) follows from

lim inf inf P (Clm (5\”, Sn/n; a) c orFm <5\n7 S /n: o/))

—hm inf mf P > éM(0; ) for all 0 & CT™ (N, Sy 0/)>
(

>hm inf inf P<
PeP

> liminf inf P

ot ot (1
(7

n  PeP

(6)

(0) > ¢°(6; a°) for all O & CIS™ (N, Sp; ), e < &71(1 — 02/)>
(0) > ¢°(0; a°) for all O & CIS™ (A, S )) + liminf inf P <ét <® 1 - /)) -1
(6)

(
/
>liminf inf P > &(0;a°) for all § ¢ CT™(\,,, f]n;o/g)) + liminf inf P <ét <o H(1- 041)> -1

n PeP n PeP

=1

Step 2. I show (38) with 6,, = 6, — ﬁ Note that by (37), there is o/ > « such that

limniann <9n g Ccrm (5\”, i]n/n, a)) - P, <9n ¢ Crsm (S\n,i]n/n, a))
> lim inf P, (e)n ¢ O (Xn, S /; o/)) —p, (en ¢ O™ (xn, S /1; a))
! a

—hmlan ( ) > ol — O;)) — Py (T(Gn) > oM (1 - 5))

> lim inf P, (T(&n) e (@1(1 — 05)7 o1 - 3)))

Under P, we can show that there is a subsequence P, such that (110), (111) hold and

T(Qn) 4 T* . — max {min{Zb—l—)\b—i— /{}, min{—Zb -\ — }}
beB Op beB

And let
B={beB:NcR).

Note that we have )\be =0, thus B # 0.
To simplify notation, let & = 1 ( —d N1~ a—)), and ¢; = 711 - %) + ¢,
cg=0"1(1-%5)—e. We have

lim inf P, <:ﬁ(en) € <c1>1(1 -

Then I show that there is k € R such that
P(T* € (c1,¢2)) > 0.

To do so, let b* be the element with largest variance, i.e. oy > max;cg 0. Then

P(T* & (61,02))

>P <62 > Zye + Ape + ZZ,JFXZ,JFUi zcl,beé\{b*}>
b
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K

P <62 > Zye + Ao+ + > c1,Ey > e1 — ppuZy — Ao — O_iab € B\{b*}>
b

O p*

(\Y

>c1,Ep > — ;\b — O'gb — ‘Pb*b|(cl - j\b* - Uib*)ab € B\{b*}>
K %3 *
L)
— * K - *
(e = M) — ("” - rpb*b|) K he B\ })
op Op*

P<Cg > Zye + Ape + i
O p*

_ - oy
> e, By > c1 = N — [ppp] (€1 — ) — ( op

- ‘pb*b

>P (62 > Zpe + Apr + —
Op*

P<CQZZb*—|—5\b*+ i

> C1> P <Eb >c1— Ao — |pveo
Op*

where
Eb = Zb — p(b, b*)Zb*.

There is x € R such that
_ N _ N Op* a ) *
P <Eb > =X — |ppen| (€= Aov) — ( - Pb*b|> —,be B\{b }> >0
op oy

and therefore

P (T* c (5, (1 - %))) > 0.

Part II. Large Bounds. By Lemma 12, there is o} such that

/
lim inf inf P <@t <o 1 - )> =1

Let o = max{a},2a} and ¢; = &~ 1(1 — %/) I show that

. . . 3 S )\ a-Ub
1™\, S, /n, o) for all @ Au ’ =1
hmnmf 19LfP <9 ¢ CI™(X\, Xy /n, o) for all 6 > T Aub + \/ﬁcl)

And the proof for the lower bound is symmetric.

Let k], — oo and k], < K,. Lemma 2 suggests that

vn

lim inf inf P <9 ¢ CI™(\, 3, /n, ) for all § > max Aup + Tub H%) =1.
n n IS

Then I simplify ¢(6, ac) for

S Tub S Oub 4
0 € [ max A\, p + —2=2c1, Max Ay p + —=K
e P e Tt
In this case, under (36),
Ay, — 0
Z,0 < Zpp, = —H—
£bp = “bbe UZ,bg/\/ﬁ

Tu,by

< )\Z,bé _A)\u,bu - 701
o,/

Aep, — A G
— £,bg U,by, _ U,by, ] — —00 (97)

G/ G,b,
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and

0—\ -
= _ Twbe c (Cl, I’u';,b] . (98)

by G -
U by

Thus, with probability approaching one,

T(@) = Zu ba > cy,

(0, a°) = o (ofcb (t%l(&, Bu)) 4 (1—a®)d (tu,g(e, Bu))) .
Moreover, (97) and (98) implies that
P (tu,1(9, [;u)) <o ((1 + peu(be, [;u)>7 (Zé b + peul(be, bu) 2, bu)>

Zip, — 2
—p T gz ) B
1+p€u(b€7b)

Therefore,
&(0,a°) < & ((1 —a)® (tu,z(e, Bu))) +o(1) < e wpa 1,
where the last inequality follows from ¢ > §. Thus by construction,
MO, a) < e <T(0),

and 6 is rejected.
The proof for (38) is similar to Part I Step 2. O

Proof of Theorem 3.

Proof. By Lemma 2, it is easy to see that

hnrr_lggf 1nf P <0€n g CcIr™ <5\n, i)n/n;a)) =1 (99)
hnrgggfplélfnp< un & CI™ (Xn,i]n/n;a>> =1.

Ye et al. (2023) confidence interval has form

|:mm1n U Q nmln_ nmlnap mmax M Q nmax_ nmaX71_]§>:|a

where /A\;’;%b is calculated by empirical bootstrap, and /A\ml, is calculate by a subsample of size
m, and
Mpmin = min Ay gp, A
n,min beB n,l,b

= min \*
n,min bel3 n,0,b)
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pLpte [%, a]. The upper bound is defined symmetrically. First consider the rejection of 0y ,.
Note that

P (am ¢ C[YKHS (Xn, S /1; a))

—p <9&n < Amomin — \/ZQ* (X;*hmin — j\n,minaﬁ>>
(940> O~ 2@ (R~ A1~ 7))

=P (Q* (Vi (Nsmin — Aain) ) < Vi — 010)) (100)
P (Q* (mx;;,max ~ Anmax), 1 — ;a) > /M (Ammax — ag,n)) . (101)

As for (100), note that

\/E(j\m,min - eé,n) = \/H(j\m,min - )‘K,bg) + \/E()\Z,bg - Hﬁ,n)

= \/ﬁ(j\m,min - )\Z,bg) + "1;1\/\/?@

= Vm(Ammin — Aep,) + 0p(1)

d .
Z
— Il')rélllgl b+ Tep
where 7 = limy, v/m (A p — Aep, ), and the limit distribution is continuous. Thus
(100) = P (Q* (v (Mysuin = Annin) +8) < Vi (ommin = Aey) ) + 0(1).
Similarly, if /m(Ayp, — 0en) € R, we have

(101) = P (Q* (\/E(X;;,max — Anmax), 1 — 13) > /m(Ammax — AW)) +o(1) (102)

with similar argument. And if \/m(Ayp, — 6e,) — 00, (102) still holds since both side of the

equation is o(1). In sum, we have
P (9&71 o4 CYKHS (S\n,f]n/n, oz)) =P ()\g,be ¢ CYKHS (5\”, f]n/n, a)) +o(1),
thus by Theorem 2(d) in Ye et al. (2023), it holds that
lim sup s%pP (9&” ¢ CTYKHS (5\”, f]n/n, a)) < a. (103)
n

(99) and (103) gives (39). O
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C.3 Auxiliary Lemmas

Lemma 2. (\/n Convergence Rate) Suppose Assumptions 1, 2, 3, 4, and 5 hold. For alle > 0,
there is k € Ry such that

I I
liminf inf P [ CI™ C — 0, + — 1—e.
im in Igrelp (C C [9@ \/ﬁ,ﬁ + \/ﬁ]> > €

Proof. It suffices to show that
N R K
liminf inf P | T(0) > ¢™(0;) forall 0 & [0 — —,0, + —| | >1—e.
im inf inf (() & (6; ) for a 9?[@ \/ﬁ,u+\/ﬁD £
Following similar argument in Lemma 3, there is subsequence P,, € P such that

liminf inf P (T(e) > & (0;a) for all 0 ¢ {94 - % 0, + \’/%D

sl

=limFP,, (T(G) > ¢"(0; ) for all 6 & [95 -

and X(FP,, ) — Xo. In addition, note that

P, (116) > (650 for a0 ¢ [0, - }9 + }D

. R
>P, (T(Q) > ¢™(0; a) for all 0 < 6, —
n ﬁan

+ Fa, <T(‘9) > ¢™(0; a) for all § > 0, + K ) _1

NG

Therefore, it suffices to show that for all € > 0, there is kK € R4 such that the following two

conditions hold

A K €
AN . _ > -
P,, <T(0) > ¢™(0; a) for all 0 < 6, an) >1 5 (104)
A K €
A . _ > S
P,, <T(0) > ¢™(0; a) for all 0 < 6, an) >1 5 (105)

I will show (104), and the proof of (105) is symmetric. In the following proof, I use n for
subsequence a,, to simplify notation.
First, I show that for all € > 0, there is k; such that

€

liminf P, (An(R1)) > 1 — & (106)
where -
— 2 - a—1 K1
An(lil) = {T(G) = ZE:Z‘Z > P 1(1 - T)7 for all 6 S 0[ — \/ﬁ} .
To see this,
P, (An(’?ﬂl))
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. _ a—7 R1
=P, <Z€’l;£ > rbxggzu,b,zz’gé > P 1(1 -3 ), forall 6 <6, — \/ﬁ>
_ a—1n K1
>P, <Z&BZ > Zups 2y, > @1 - —5 ), forall 6 <6, - \/ﬁ>
_p (Pebe A Aew =0 00=0  0-0 0= 0u O Aup,
"\ G/ G G, N T Gubl VR Gup /N Gup, /T
Nio=XNs o AN o—6 9,—p _ =
Evbf e7b[ €7b€ l —1 « ,’7 Hl
: + - + - > 11— 1) forall 0 <6 — —=
O'“;Z/\/ﬁ O'“;Z/\/ﬁ Uf,l;e/\/ﬁ 2 \/ﬁ
N = A = = _ 5 N = A . _
sp, (Db " b B R b Auby b " b 1 o1 - A=)
O-Z,i)g/\/ﬁ G0, Oube  Oupy/ VN 0&52/\/ﬁ 04, 2

-1 R o
~ 1 1 Ou — Aup b, ~ Mp _ _ @ 3
P | F >t u " Cube  Tlb Tl ,/<;1>&ACI>11———\/E<)\A—/\A>

" (Ug’f,e Uu,lm) ( O‘beu/\/ﬁ O-gj;l/\/ﬁ bbe ( 2 ) bbe bbe

The existence of k1 follows from

1 1\ (.- A Moj, = A
u — Nu,by, £,by B f,i)g
N + N N - —= - OP(]-)a
(%,34 Uu,bu> (%bu/ Voo 65 /v )
A -1 a—1 &
615,27 (1= S5 = Vi (A, = Ay, ) = O (D).

Second, if minyep pgu(i)g, b) > —1, there is £ € (0,1) such that ﬁgu(l;g, by) > & — 1 with probablity
approaching one by Assumption 1, 2, 3, and 4. Then, for all € > 0, there is M € R such that

liminf P, (By) > 1 - % (107)
where
By, = Bin U Bap,
Bin = {Ibréigpeu(l;z,b) = 1} :
By = {I&iélpzu(i?z,b) > —1, (1 + ﬁzu(?)z,bu»_l W < M}
because

liminf P, (B, U Bay,)
n

. ) - . ~1 Ayp, — A bu -
=1— hn%mf P, (%éélpgu(bg,b) > —1, (1 + Péu(bz,bu)> W > M)
.. . 2 1 Aub - Xub v
>1 — _ - sOu ;00
>1 hmnlnf P, (%élél peu(be, b) > —1, ¢ 7&%()”/\/% > M

1 Aup — A
>1 — liminf P, ( Mubu T by
n

§ &u,b/\/ﬁ

>M>



and the existence of M follows from

1

)\u,bu - )\u,bu

&u,bu/\/ﬁ :Op(l)

And by similar argument in (106), there is <o such that

liminf P, (Cy(R2)) > 1 — % (108)

where

Cn(Re) = {T(@) > z for all 0 < 6, — \I;%} ,

where 7 is defined in Lemma 5 with M given above (107).

In sum, let & = max {R1, k2,0},
D, = {T(an) > (0,1 — a°) for all § < 0, — \’;ﬁ} :
we have

lim inf P, (Dy,)

> lim inf P, (An(K) N By N C(R) N Dn)

:hnﬁan (An(R) N By, N Cpr(R))

> lim inf £, (An(R)) + Py (Bp) + P, (Cr(R)) — 2

> lim inf P, (An(F1)) + P (Ba) + Pa (Cu(F2)) — 2
€

>1——.
- 2

where the equality follows from Lemma 5: the three assumptions in Lemma 5 hold because (i)
k>0, (ii) An(R), (iil) B, N Cy(R). The last inequality follows from (106), (107) and (108). O

Lemma 3. Under Assumptions 1, 2, 3, 4, 5, to prove that

limsupsup sup P (0 gCcrm (S\n,f}n/n, oz)) < a,

n=00 PEP 6e(0p 1,0p,4]

it suffices to show that we have

lim_>sup max {Pn (T(epmg) > &™O0p, 0, ¢p ;) or T(Gpmm) > &™(0p,m, Ep, ; 04)) ,
P, (T(epmu) > E™(Op, s o 1 0) o8 T(Op,m) > E™(Op, ams a))} <a-n  (109)
for all sequence {P,} € P> = x>, P, with
1. The convergence of €1,
Q(P,) = Q eS. (110)
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2. The convergence of

APotb — 0P, 0P,k — APyup
An ks Anku) = ("") ,<””> = (Ake, Meu), 111
( ) ( UPn,é,b/\/ﬁ beB UPn,u,b/\/ﬁ beB ( ) iy

with Aee € Ao, Auw € Mo, A, Amu € A and A, Aue € A, 000 = 1/ AepQ0 A}y,
00.up = 1/ AupQ0A,

u,b?

Ao

{)\ € [0, +00]B : min A, = O}
beB

A = {A € [—o00, +00])Pl - min A, < 0} :
beB

where
& :ilgf{czo:ﬁ<c,)\pn,in/n) +nga}. (112)

Recall that é"(0,c;a) is defined in (27) and p <c, Ap,, ﬁ]n/n> is defined in (30).

Proof. There is alwasy a subsequence {n,}, {P,,,0n, } such that

liririsolip Isi’légee[eiigau] P (6 g Cc1rm (jxn,fln/n, oz)) = lg}l P,, (0% g CcI™ (:\n, f]n/n, a)) .
(113)

Since S defined in Assumption 3 is compact (e.g. in the Frobenius norm), and Assumption 3

implies that Q(P,,) € S for all n,, there exists a further subsequence {n,} C {n,} such that

lim Q(Pnr) — Qo €S.

T—00

Also, note that the set [—oo, —|—oo]‘6| is compact under metric d(\,\) = H<I>()\) — CD(S\)‘ for ®(-)

the standard normal cdf applied elementwise, and ||-|| the Euclidean norm. Therefore, there is

a further subsequence {ns} C {n,} along which (111) holds. We have found a subsequence ng
such that (110) and (111) hold. And, by (113), we have

limsup sup sup P (9 g o (Xn,ﬁln/n;oo) =lim P,, (0ns g Ccre (S\ns, f)ns/ns;a)> .
n—00  PEP 0€[0y,0] s

With slight abuse of notation, in the following equations I use n for subsequence ng to simplify

notation:

Py, (ens g crm (an, S, /s; a))
<P, (Hn g Ccr™ (j\n,f]n/n, a) ,Ap, € An) + P, ()\Pn ¢ An)
< max {Pn ([epmg, Op, m] ¢ CI™ (&n, S/ a) Ap, € An) ,

P, ([epmm, Op, | ¢ CT™ (Xm S/ a) Ap, € An)} P, (Apn ¢ An)
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< {Pu (T(Op,0) > & (0p,30) ot TOp, m) > & (O, mi @) Ap, € An) |

P (1(05,m) > & (Op,m3 @) 01 T(Op,) > (0, 030), Ap, € ) }+1+0(1)
max { P (T(0p,.0) > & (0p, ,8,5 @) or T(0p, ) > ™ (0p,ms E,30))

Po, (T(0psm) > &0, ms ;@) 08 T(0p, ) > & (Op, 0, Ep,30)) b 47+ 0(1).

Recall that ¢ is defined in (31) and ¢}, is defined in (112), thus the last inequality follows from
the fact that ¢, <& if Ap, € A,,. Therefore it suffices to show (109). O]

Lemma 4. Under Assumptions 1, 2, 3, 4, 5, under sequences (110) and (111), if

in ooupAeub € R, 114
rblélélao’ b € ( )
it holds that
7 ~C c d c
(2005,0).Op,002)) 5 (T e (115)
If
i by = — 11
min o0 b Aeu.b 00, (116)
it holds that
7 ~C c d c
(205,00, O, 0:0) 5 (T cf)yp (117)
and for all c € R
P, (T(epmm) > c) 0. (118)

Proof. Note that

/\p 0., — IMaXxyp A
. . ,by eB APy ,u,b
lim v/n (Ap, 06, — APyuby) = M op, 4 p— -

n n O-Pn,u,b/\/ﬁ

0p,0 — AP, ub

TPy ub/ VN
= minlimop_, bw
beB n T op,up/Vn
Thus the two cases in (114) and (116) correspond to whether the length of the identified set of
0 is large asymptotically. I will show (115) under (114 in Step 1 and 2, then show (117) and
(118) under (116) in Step 3.
Step 1. Show that under (114),

=limmino
n beB Pn,u,b

= mi Aoub- 119
rgle%l 00,u,bNu,b ( )

(Ee(epn,k), bu(0p, 1), T(0p, 1), ® (te(0p, 1 Bre)) @ (tu(Op, ks Bku)))

2y (bits bk Ther @ (e (Bre)) , @ (tru(Bru) ) k=t.m.0 -

k={m,u
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where

tre(Bre) = (tke (D), tre2(b))yep,, -

tk:u(Bku) = (tku,l(b)a tkUvQ(b))beBku .

Step 1.1. Note that

s - Xep =0k Opk— Aup
T(Hpmk):max{mln > == min —> =

1
beB O'gvb/\/ﬁ " beB &u,b/\/ﬁ

M= Apoib  OPyab  APyub — Mup  OPyub
— max ¢ min ,A %, + An: s )\n,kf,by min A’ﬂ7u7 u, + Anyuv )\nqu,b
beBe  Gyp/\/n Gup bEBu TP, up/ VN Fub

~

M= Apoth . OBt . APuub— b OPupb
:max{mln : E A N ke, D ot oy e Ankup ¢ W.p.a. 1

bEBe &Z,b/\/ﬁ Tep bEBky, &u,b/\/ﬁ Oub

d . .

—max { min Zgp + Apep, min Zy,p + Agyp o - (120)
beByy beByy,

The first line is by definition, the second line simply rearranges terms with A, xs.p, A\ ku,p defined
in (111) and By, B, defined in Section C.1 first paragraph. To see the third line, note that by

Assumption 1, 2, 3, 4, we have

S\Z,b — AP, b APy ub — ;\u,b OPutb O P ub
e | | = = (121)
O'E,b/\/ﬁ beB Uu,b/\/ﬁ beB 00b beB Oub beB
4 (Ze, Zus Loj)) -

And by definition, for b € B;\By¢, Arep = 00, thus with probability going to one,

APk Aew, = O,k Meby — APk, . Neb— APotb TP ab
min + A

1 . < — < — - - kLD
beB O3/ VN Gob, /N Gy /1 Gop/Vn 6op

Thus asymptotically, we can ignore B,\By,. With the same argument, we can replace B, with
By, in the second part. The fourth line follows from (i) (121), (ii) Slustsky’s Lemma and (iii)

the limit distribution is well defined because

. APt =Pk . APLtb, — AP, b minges 00,u,bAeu,b
)\kf,b _ hm L, o) Z hm n X,00 n,UW,0qy — S sUy u, c R, (122)
noop,ep/Vn n op,eb/VN 00,
. O,k — AP ub .. APtb, — AP, ub minges 00,4, A ru,b
)\ku’b _ hm %) n,U, Z hm n ,X,0p n,U,0u — S sUy u, c R
n JPn,u,b/\/ﬁ n O-Pn,u,b/\/ﬁ 00,u,b

Step 1.2. As for @ (tA&l(@k,Bkg)), let b € By If minpg, (b, 8) = —1, then ® (tkgyl(b)) =0 by
beB
construction in (79). And note that rbnigpgu(b, 5) = —1 implies Ay = —ad, ; for some a > 0,
c ;

thus Ibnilrglﬁgu(b, 5) = —1 for all samples, thus with probability one, ® (fm(@k,b) = 0, and the
€
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convergence is trivial. Then consider minpy, (b, b) > —1, where
beB

. A~ =\ 1 5 Ou ~ 7 5 g
P (tr,1(0k, b)) = mind <<1 + Peu (b, b)> (Zu ;= ’b'/\Pn wud T Aiepew (b, b) <Z@7b + AE,b )\Pn,ké,b>>>
beB T Oy T Oeb

)

By (122) and the definition of By, we have Ay, € R, and thus
P (tr,1(0k, b))
. N N\ 5 Oub ~ P 5 0¢b
=min ¢ <1 + peu (b, b)) Zui; + A7>\Pn kuh T Peu(b, ) Zoy + AP, kb
e S Gep

d . ~\ —1 B

—min® | (14 pp,(b, b Z, 5+ Ay + Peu(0:0) (Zop + A >
beB <( pe )> < b T Mkub T PL (0,0) (Zep k@,b)>
=@ (ke (b)) -

Thus
® (t0,1(05. Bie)) 2 @ (tre1 (Bre)) - (123)

This argument also applies to ® (t2(0k, Bie))s ® (tu,1(0k, Bru)), ® (tu2(0k, Bru))-
Step 1.3. Let
g(X,)Y)=1[X <Y].

For by, by € By, by # ba,
P (Zgp, + Metpy = Zupy + Mithy) = P ((Arpy, — Avpy) Zs = Mktpy — Metpy) = 0,
following from Ay, # Asp,, Zs ~ N(0,90), Qo non-singular and Aggp,, Akep, € R. Thus
9(Zop, + Netprs Zoby + Mkt py)
is almost sure continuous, and thus by continuous mapping theorem, it holds that
9 (Zeins Zews) 2 9(Zun, + Meton> Zbs + Mt - (124)

Similarly, we have
d
9 (Zube, Zopy) = 9(Zupy + Mewbys Zoby, + Akeby) - (125)

Then consider by € By and by € By, (i) if Agp, # Aup,, similar argument holds, and we have
9 (Zb1> Zusy) 5 9 (Zow, + Netbns Zuuy + News) - (126)
(ii) if Agp, = Aup,, then
9(Zeprs Zups) = 9(Zopy + Metprs Zuby + Mewpy) = 1

for all samples, thus the convergence holds trivially. The convergence in (120), (123), (124),
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(125), (126) holds jointly.
Step 2. Then I show the convergence of ® (¢°(0, «)). Note that ® (¢°(0x, «)) can be written

as
P (¢°(Or, av))
( 1-— a (I) (t&g ek,bg ) + ad (tg’l(ek,l;[))) 1 [Z&Be > Zu,lA)u:|
((1 —a)d ( w2 (0, bg)) +ad (t%l(&k, zsg))) 1 [zu;l < Zu,z;u}
Z Z [Zop1 = Zubor Zopy < Z0Bro\br> Zube < ZuBr\bs) X
b1EBe b2 EBgy,
(1 = a)® (tu,2(0k,b1)) + a® (te,1(0k, b2)))
+ Z Z [Z0b1 < Zupo Zopy < Z0B\brs Bubs < ZuBra\ba) X
b1E€Byp b2€Byy
((1 — Oz)q) (tug(ek, bl)) + ad (tu,1(9k, bz))) w.p.a. 1
And

1 [Zf,bl = Zu,bm Zf,bl < Zé,Bke\bNZ%bz < ZU,Bku\b2}

=g (Z’u,bga Zf,bl) H g <Z€,b1 ; Zg’i)l) H g (Z&b27 Zg7l;g>

b1EBRe\b1 bo€Bye\ba

120, < Zupss Zer < Z0Bu\brs Zuby < ZuBi\bs )

—[1=9(Zupy Zen)] 1 g(Ze,bl,Zg,i,l) 1T g(ZE,bsz£,52>

b1 €Bye\b1 ba€Br\ba
Since all function are almost sure continuous as discussed before, we have
. d
@ (e(Ok, ) = @ (cf(a))

following from (123), (124), (125), (126).
Step 3. Now assume (116) holds. We can show that

(55(9Pn,k), bu(0p, 1), T(Op, 1), ® (£e(0p, s Bre)) @ (£u(0p, k) Bku)))

4 (Okes bkus Thy @ (te(Bre)) » @ (thu(Bru))) pp

k=Clu

with similar argument as Step 1 and 2. Regarding (118), note that

(61) = max 4 mi Ap=Om O = Aup
m) = max { min —
beB Gypp/\/n beB Gup/ /N

< ma )\E,bg - em em - )\u,bu
max N N
- Jeybe/\/ﬁ O-u,bu/\/ﬁ
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= max Xe’be — Aeby + Ttby Moy — Om Aup, — S\’LMbu + Ouby Om — Aup
Geb/Vn  Gupy oo /NN Gup/V G, Oup, /NN

By (116), (119) and 6,, = (67 + 6.,)/2,

lim Ao, — Om . lim Om — Aup ~
im ——— = —o0, -
no oup /N WO
Thus it is easy to see (118) holds. O
Lemma 5. Assume that (i) 0 < 0y; (ii)
PO oz “1q @7,
TO)=Z2,;, >0 (1 5 ); (127)

(iii) either

or

~ 7 -1 )\u w )\u u
<1+pgu(bg,bu)) Of’b /fb < I, (128)

7(0) > z, (129)

where M € R, z is defined in Lemma 6 with M given in (128). Then

T(0) > ¢™0,1 — af). (130)

Proof. Note that ¢* < ®1(1 — 231) by construction, thus under (127), T(0) > ¢* and (130) is
equivalent to
T(9) > é(0,1 — a°). (131)

If ming_p ﬁgu(i)é, B) = —1, then
(0,1 - %) = 07 (1= a)® (t2(0,0)) ) < @7 (1-a%) <071 - ).
In this case, (131) holds trivially. If min;_, pgu(f)g, ZNJ) > —1, we have

te1(0, by) = (l)réig (1 + peu(by, 5))_1 (Z + peu(be,b)Z 0b )

R A 0 )\ub
< (1+p2u(béabu)> (Uub /\/>+p5u(b€7b ) éb)

) -1 )\ub 5\
§( Plu (bﬂab )) ( Gub /\/’ +pé“(be’b )Zf732>
_ 1
< M + 52&813’
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where the second inequality uses 8 < 0y < A, by (i). Then

® (T(e)) — P (0,1 —

Q

)

=0 (1(0)) — a°® (t4,1(6,50)) — (1 = a*) (t,2(0,b0))
>0 (2,;,) - a0 <M + ;Zﬁ)z) —(1-a°)
—H (2,,,M) >0,

where H(z, M) is defined in Lemma 6. H(Z, by

Lemma 6. Let .
H(z,M)=®(z) — a‘® <M+ 2z> —(1—af).
For all M € R, there is some zZ € R such that H(z) > 0 for all z > %.

Proof. Note that

and thus there is Z € R such that H'(z) < 0 for all z > z. Also note that

zhjgo H(z)=0.

Therefore, for all z > z, we have H(z) > 0.

Lemma 7. Let o € (0, %), ate(5,a),ne [O, %) Recall that ¢*™ = &~1(1 — $). Let

H(c,A,p)=®2(-c,A—c;p) + @ ( C),

p5(cx,m) = sup {p sup H ("™ A, p) < o — 77} :
p A>0

For all € > 0, there is € < c*™ such that

sup  sup H (¢,A,p) < a—n.
p<ps(a,m)—€£ A0

Proof. First note that we can check numerically that for a € (0, 1),

) « ) A ; 3
sup H (¢®™™,A,0) =sup =P (A —-c")+ @ <— - CSIm) <-a<a-—
sup H ( )= 5w 50 ) 5 1 n

and thus p4(a,n) is well defined. And

sup H (CSim, A, 1) =20 (—c)=a>a—mn,
A>0

thus p3(a,n) < 1.
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Second, I show that for all ¢ € (0, ¢*™], it holds that for all |p| < 1,

sup H (¢, A,p) = sup H(c,A,p) (134)
A>0 A€[0,A]

where A = 2¢5™ + | /4(csim)2 + 8/31og(2). The first order derivative gives that for all A > A,

(p—1)c— pA 1 3
) <1 — ) — 5 eXP <8A(A - 40))]

< ¢(A —c) {1 — %exp (:A(A - 4csim)>} <0

dH (¢, A, p)

ol —pa-o)

Therefore, (134) holds for all ¢ € (0, ¢5™].
Third, let p = p3(a,n) — &, and by construction,

a—n > sup H (CSim7 Aa p;(a7 77))
A€[0,A]

dH (5™, A, p(A))

= sup H (™ A, p) + 13
A€[0,A] ( ) dp

> sup H (cSim, A, p) + aé (135)
A€[0,A]

where
dH sim A. b ) )
a = inf ) (Cd”p) — inf i é (—CSIm,A _ Csun;[)) < 0.
A€ [0,A] P A €[0,A]
p € [p, p3(,n)] p € [pp5(a;n)]

Rewrite (135) we get

sup H (cSim,A,ﬁ) <a-—n-—ad.
A€[0,A]

Lastly,

dH (¢, A, p) . (p—l)c_ Ap (e cp—ctA) —é—c
DD g(a w(¢hw2 ¢LWJ o ”<1_ﬁ> o(-5-¢).

Let

H(c,A
b= - inf 4 (. 4,p)

> 0.
pef0ps(am)]celoem],acp.a]  de

Choose ¢ = ¢*™ — g—g, and then for all p < p3(a,n) — &,

dH ((A), A, p)

sup H (CSim, A,p) = sup H(c,A,p)+ (™M — @)
A€[0,A] A€[0,A] de
> sup H (¢ A, p) —b(™ —¢). (136)
A€[0,A]
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In sum, for all p < p5(a,n) — &, by (134), (135), (136),
sup H (¢,A,p) = sup H(¢,Ap)<a-—n —a£+b—£ <a-—mn.

A>0 A€[0,A] 2b

Lemma 8. Suppose Assumptions 1, 2, 3, 4, and 5 hold. Let a € (0,5)’ at e (%70[)} n e
[0’ CM_20[C)' Assume that Ay = Ay, and P satisfies that

sup pg(be, bu) < p3(a,n), (137)
PeP

where py(a,n) is defined in Lemma 7 equation (132). Then there is o > a such that

!
liminf inf Pt <@ 11— =1. 138
imint o P (&< @71 ) 1)

Proof. Let
]' *
f = 5 (pQ(a7 77) — sup pf(b@ bu)> > 07
PeP

o

. Therefore, by Lemma 7, there is ¢ < ®~!(1 — §) such
that (133) holds. To show (138), note that

liminf inf P (¢* <) > liminf inf P (supp(z, ) < a —
im inf inf (¢"<e) > iminf inf (ilelip(c )<« 77)

> liminf inf P (G, \) < a —
> liminf inf (ileuA)p(c, )< a n)

Recall that

—

P (T(ee) > (0, 8) V {T(Gm) > (O, &) AT(0,) > (eu,c)} (A3 ))
(F(0) > E(00,0) v {T () > & (O0) AT > (60,0)}: (0 5)) ]
(AHZ >corT(9 ) > é;(A,i)),P5<T(9 )>corT(9) G (A, 2))}

p(¢, \) =max

<max

r—’HFU

I will show that

sup P?® (T(Gg) >cor T(0p) > & (A, f])) <a—nwpa. l,
AEA

and similarly we can show that
sup P* (T(Gm) > cor T(0y) > & (), ﬁ])) <a—nwpa. l
AEA

To see this,

P (1(600) > ¢ o T(0) > & (0, %))
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Oy

i O — A; _ Ay — O, i Om — A; e
e {Il}gllsl Jb/\f bes Ub/\f} Zeor max{g&? op//n’ bes ab/f} & 2)>

mi 0 —)\5 B A
W W } & ”)

max
5= 00 X —0 em—Xs .

5 (“““ N abu/\f
(
(

bu/f

O, — 0, > <9m—9u >
L ZE + > (A2 + P _78 >é
be KNG A 5) bu

= (o g~ st -2 (G )
<@ (e pnlbrb) + @ (-5 )

mln{ be> — } or O — Ou — 7y > ¢ (z\,i))
>cC

Zy

=P
<P
=P
<P
=P

=H (57 A, ﬁf(bﬁa bu)) (139)
o Gu [
where A = B/ \éf >0,

H(E,A,p):q)(—é,A—E;p)—}—@<—§—E>.

Under (137) and Assumptions 1, 2, 3, 4, and 5, it holds that
pulbe,b) < () — € wpa. 1.
Thus (139) gives w.p.a. 1,

P (T(eg) >cor T(0n) > & (O, 2)) < H (G A, po(be, b))

< sup supH(GAp)<a-—1n
p<p3(am)—€ A>0

where the last inequality follows from the construction of ¢. O
Lemma 9. p(c) is continuous at ¢ > 0.

Proof. For e > 0, let
pr(c,e) =P (cp(c) > T > cf(c—¢e)) < Plc—e<Tp<c).

Then
lim pg(c,e) =0
e—0

for all ¢ > 0 since (i) under (114) and k = ¢, m, u, or under (116) and k = ¢, u, T}, is continuously
distributed, (ii) under (116) and k = m

Plc—e<Ty<c¢)<P(c—e<Ty) =0.
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But then
plc—¢) —ple)
< max {P <Tg > cl(c—¢) or Tp > B (¢ — 5)) - P (Tg > cl(c) or T), > c%(c)) ,
P (Tm > (c—e)or T, > cl(c— 5)) - P <Tm >cl(¢)or T, > cﬁ(c))}

< max {pg(c,&f) —I—pm(C, 5)a pu(C,E) +pm(635)}

e—0
— =0

Thus p(c) is continous at ¢ > 0. O

Lemma 10. Let

where

It holds that

1. for alla € (0,1), a¢ € (4, ), there is unique solution p*(a‘,a) € (0,1) such that

H (p*(af a),a) =1— (140)

oo

2. Let £ > 0. For all p € [0, p*(a®, a) —&], there is € > 0 such that

H(p,a) < 1-3 -

Proof. Straightforward calculation gives that for all p € (0, 1),

(1-p)2
dH(p,a) af (I-a(p+1)\ * op (=) (p+1)
dp ‘ﬁp<p+1>< a*(1 - p) ) \/1g< a*(1—p) >>O'

And note that

1 1—a%)(1
lim = = lim 4 [ — log M = +o0,
p—1 p—1 2p Ozc(l — p)

lim(p —1)
p—1 p—1

[1]
I
=
E
i
|
—
S~—
S|
)
7N
—
o
=l
—=| o
S~—
=
)
\_/+
Y
N———
I
=
1
A
—
—t
M
RS
N~—
(Y]
7N
—_
| | =
o)
N———
I
L

thus



«
lim H(p,a®)=(1-a%)=1-a‘<1—=
lim H(p, of) = (1 - of) af <1-o,

where the inequality follows from a° € (§, ). Thus H(p,a) is strictly increasing in p € (0, 1)
and there is unique solution that H(p*) =1 — §. O

Lemma 11. Suppose Assumptions 1, 2, 3, 4, and 5 hold. If

sup max min py(b1,b9) < p*(c, o
Peglne;’)’(bgegpf( 1,b2) < p*(a, af),

then there is o/ > a such that
lin}linf }E%P (T(G) > ¢%(0;0°) for all O & CT*™(A\n, $n/n, o/)) =1
Proof. Denote X
Aep— 0
2= G

Without loss of generality, assume that

Zop =2y, Zup= Zyp.

T(9) = 21 and p12 = pe(1,2) < p*(a, ).

The lower bound is

o\l . Z -z
. P1241 2
¢ :mm<1+ b,l) (Z~+ b,1)Z )37
w1 = min p(b,1) p (0, 1) 20 Tt
and the upper bound is
S\l - Zy — p12Z2
tuz=  min <1 — pulb, 1)) (Zug - pu(b,l)ZuJ) < 2T
beB:pu(b,1)<1 ’ 1 —p12

This 0 is rejected if
D(Z1) > () =(1—a)P (ty2) +a P (ty,1)-

Since by construction, Z9 > Zq, it sufficies to show that

29 — p1221 p1221 — 22
P(Z)> sup (1 —a®)o | =—""— ) +a°D () . 141
(21) 22221( ) ( 1—p12 ) 14 p1o (141)

Let

i Z z _
H(z)=(1-a%® <22 P12 1) + P <p12 ! Z2> ,
1—p12 1+ p12

and it is easy to see that
lim H(z)=1—-a°< ®(2),

29—00

and

p12 — 1
HZ)=(1-a%0 (2 ‘P Z
(20 = (1-a)2(2) +a%e (72712
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(¢

<(1—-a%%(2) +% <®(2y),

where the second line follows from Z; > ¢ > 0. The first order derivative of H(z3) with respect

1—-af 2zo — p12.21 af p1221 — 22
h(ZQ) = ¢ ( - ¢ :
1 — p12o 1—p12 1+ p12 1+ p12

to z9 is

And h(z2) > 0 is equivalent to

— C — J—
log<1 a 1+P12) > log <¢ (PlQZl Z2>) ~log <¢ <22 012Z1>>
a¢ 1—p12 14 p1o 1—p12

_ 2p12 (22 — Zip12)?
- 2
(1 - P%z)

(i) If 2a° — 1 < p <0, then (142) holds trivially, and thus

(142)

sup H(z2) = lim H(z) < ®(Z2),

2’2221 22—00

and (141) holds.
(ii) If =1 < p < 2a¢ — 1, straightforward calculation shows that H(z2) decreases in

[max {Z1, 23}, 23] and increases in [25, +00), where
2 =pZ1 + (1 - pVE.

Thus
sup H(z2) < max{H(Zl), li_r>n H(zg)} <®(2).

290221 z2

(iii) if p € (0, p* (e, af) — %), straightforward calculation shows that H(zg) increases in

[max {21, 23}, 23] and decreases in [z5, +00), thus

ngg H(z)<H(z)=1-a%(1+p)=E)+a@((p—1)E) < ®(2),

where the last inequality is by Lemma 10. O

Lemma 12. Suppose Assumptions 1, 2, 3, and 4 hold. And An is defined as in (68). Let
a€(0,3), a® € (%,a), n €[0,25%). In addition, assume (36). It holds that

/
liminf inf P <ét <311 - O‘)) ~1.
n PeP 2

a—af

2
as & B @ 11— a+n). O

Proof. If n = 0, trivial, following from the discussion around (17). If n € (0, ), trivial too,
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D Proof for Section 4

This proof follows closely from Kaido et al. (2019). The key difference is that (i) I adjust the
covariance matrix 3 for the estimation uncertainty in ¢; (ii) I linearize the moment conditions
and Ag, A, with a slightly different Taylor expansion, thus the definition of the Jacobian D is
different from theirs; (iii) because of different objective function, the linear program here has a

different structure from theirs.

D.1 Notation

The ¢ expansion of set A is defined as
Af = {a e R% : dy(a, A) < e} ,
where dp is the Hausdorfl distance
dp(a, A) = inf |ja —al| .
acA
Let m(X, B) be a K dimensional vector, with K = J 4 dy + d,, + d,, and

mz(X;B,¢)

me(X; B, )

mu(X; 8, 9)
mep(X)

That is, with slight abuse of notation, I denote m j;; as the first element of my, etc. For each
(8,9), (3.¢) € Bx & and P, let Qp ((8,¢), (8, 5)) € RE*K denote

P ((8:0),(3.8)) = cov (m(Xi; B,0) » ' (Xi:6,9) )

and I use Qp(B3) for Qp ((B,¢p), (B, ¢p)). And let w;j(B, ) = /Qp,; ((B,¢). (B,¢)). Let
Gn.7 (5. ) f(mj(/)’,@) E[mg(Xi; 8,¢)))
Gy, \/ﬁ( p — B [my(Xi)])

Table 5 summarizes other notations used in this proof.

D.2 Additional Assumptions

Assumption 10. All distributions P € P satisfy the following:

1. Epmj(X;,8)] < 0,5 =1,...,J1 and Ep[m; (X;,5)] = 0,5 = 1+ 1,...,J1 + Ja for
some (3 € B;
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Table 5: Notation

Notation Defined in Equation Notation Defined in Equation
G, (143) Cnjs Cnke (155), (163)
.pi(B), mpe(B)  (146), (164) Cree (200)

0.5 (B) (147) ¢y, (Bn) (201)

T (150) chp(B) (205)

Ut (151) Crp (186)

Un j g, (A) (157), (160) fong, 7 =1,..,2Ry (145)

Unj g (A)Up g g, (A)  (182) (183) &j ,Jj=1,...,2R; (144)

Ungs Unu (184), (185) A, (165)

v i (A) (203) o (204)

Vi (B 0) (202) L j (D), Lnjp, (158), (162)

Un i (D) (253) Mn.j.8. (D) (159), (161)

V(B c) (252) TnjBs TnkB (170), (176)
w;(A) (195) gy ik (168), (169), (175)
20, " (196), (209) Ux (208)

W°(c) (197)

2. {X;,i>1} are i.id.;

3. There is € > 0 such that U%’j(ﬂ) €le,1/el forj=1,....J1 + Jo,l,u for all B € B;

4. For some 6 >0 and M € (0,00) and

Ep Zul;‘m] (Xi;ﬁvgpP)‘Q—Hs SMa v.]:LvK
S

Assumption 11. All distributions P € P satisfy one of the following two conditions for some
constants w > 0,e > 0,M < oo. The functions m; (X;;5,¢), 7 = 1,..., K, are defined on
X x B° x ®°. There erists Ry € N, 1 < Ry < J1/2 and measurable functions tj : X x B° x ¢° —

[0,M], j € Ri ={1,..., R1} such that for each j € Ry,

mir, (X;B8,¢) = —m; (X;8,0) —t; (X;8,¢)

For each j € R1NJ1(P,B,¢), and any choice je {j,7 + R1}, one of the following holds:

1. One has
inf eig (X5 ) >
ﬁelzrsl(P)elg< Jk) =

where

Te={j:j e RINT(P.B,e)}
UJ (P, B, o)\ {1, ...,2R; }
U jk(Pvﬂa 6)'

and Ji and Jy, are defined in (65) and (66).
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2. There is to : B x &% — [0, M] such that

M (Ep [me(Xi; 8,9)]) = AL (Bp [mu(Xi; 8, 0)]) = —to(8, ¢)-

Let k =/¢,u and

T = Ti\[K].
One has
. . > . . N>
ﬁeltrgl(fP) eig (E%) > w, and ﬁeltrgl(fP) eig (Eju) > w

Assumption 11 is an analog of Kaido et al. (2019) Assumption E3.2. Under the condition
that the sum of two moments is non-positive, we only need the rank condition to hold for each

of the moments, but not jointly.
Assumption 12. All distributions P € P satisfy the following conditions:

1. The class of functions {w};;(ﬁ,go)mj(-,ﬂ,ap) X - R,EB,pcC (I)} is measurable for
eachj=1,..., K.

2. The empirical process Gy, is uniformly asymptotically op-equicontinuous. That is, for any

e >0,
>6>:0

lim . sup ) sup HQP ((51,801)7 (51;@1)) —Qp ((52;@2), (52&2)) H = 0.
v || ((B1:01):(B1,81)) = ((Basp2),(B2.2) ) || <6 PEP

l(sing lim sup sup P ( sup H@n(ﬁa ©) — @R(Bv ?)
W nmoo PEP \ gp((8:0).(5.8))<8

3. Qp satisfies

D.3 Details of the Inference Procedure

If Assumption 11 is invoked, we make the following adjustment to the inference procedure.
In (51), we replace the estimated standard deviation &7, ..., 695, with 7, ...,&%1. For
j=1,..., Ry, let [j] =j+ Ry and

GM(B) = 61(8) = fin 3 (B)65(B) + (1 — fin j(B)) 615 (B)- (144)
with
)
~ . on.i (8,0
B (8) = min g max | 0, 00— |1y
My, [51(2,¥ Mn, (6790)
i (B) T ons(B8) (145)
fing (B) =1 — fin 15 (B, ) -
In (55), if

ni(B) =0=E&,1;(B),

we replace Z! () with —Z, ;(8) and D, (j;(8) with —D,,;(8) for j = 1,..., R1.
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And if Assumption 11.2 is invoked, we do similar adjustment for Ao and \,. That is, if
£n.0(8) = 0, we replace 6¢(8) with &,(8) in (50), and replace Z;, ,(8) with —Z;,(3) and Dmg(ﬁ)
with —D,, ., (8) in (53), (54).

D.4 Proof of Theorem 1

Proof. Let vp = (7y1,p, Y2,p,73,P), Where y1.p = (y1,P1, - - -, 71,P,J,Y1,P0) With

’Yl,P,j(B) UPj(ﬁ)EP [m] (le /8 ‘PP)] .7 = 17 ceey J7 (146)
Ape(B,¢p) — Apu(B, p)
= ’ 147
T N D ) i
v2,p = (vech (Qp(5)),vec (Dp(B)),vec (Gp(B))), and v3 p = P. We proceed in steps.
Step 1. Let
{P’VZ?/anan} S {(P7679) : P S Paﬂ € B(P)ve S [)‘P,Z(67S0P>7)‘P,u<ﬁ7§01:’)]}
be a sequence such that
liminf inf inf inf P (6, € CI,) =liminf P, (6, € CI,). (148)
ns00 PEP BEB(P) Oelhe(sor ) hu(Brop)] n—+o
Let {l,,} be a subsequence of {n} such that
liminf P, (6, € CI,) = lim B, (6, € CI;,). (149)
n—oo n—o0
Then there is a further subsequence {a,} of {l,,} such that
lim Kq \/an’yl Papyi (ﬁan) 1,5 € R[_OO], 7=0,1,...,J. (150)

an—>00

To simplify notation, I write (P, By, 6,) to refer to (P, , B4, ,0a,) throughout this Appendix.
For j =0,1,...,J, let

0 ifm,=0
T :{ DR (151)

The true value 6,, is covered when

inf 5 S\Z(B)N_ 6%)5(5) <q
st. G €B, % <eB)Vj=1,...0 [~ "

< o _
T st feB, YO <of) vi=1,..J
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n n & —Un
T N
VAN Jim .(?+ﬂ @) < 0 and
st. Ae Y2 (B-B,), EES) <e(But58) Vi=1,001
Vn(6n Au Bn-f—%
N e ) 0
nMn, i | Bn Bp -
st. A€ Y (B-B,), \FUJZ;Z&V)W) <c<ﬁn+%),w=1, J
(152)
where in (152), I simply replace ﬁ with 5, + %.
Step 2. Simplify
\/ﬁmn,j (Bn + %7 @) S\Z </8n + %) - en and Hn - 5\u (Bn + %) .
Straightforward calculation gives
\/ﬁmn,j (Bn“‘%a@) . op, (Bn) 1« @n,j (ﬁn‘i‘%ﬂoﬂl)
W) \Tafeed) )T et
N mn,j (Bn + %7 @) - mn,j (ﬁn + %7 SOPn) (153)
UPn:j (Bn) /\/’E
Ep, [m; (Ba+ 28, 0p.)] = Er, [m; (B, op,)]

ni(Bn) |- 154
Ay VT (B1) (154)

Then I further simplify each element. For (153),

77_’Ln,j (Bn + %, S(A)) — mn,] (ﬁn + %, SOP">

OP,,j (ﬁn) /\/ﬁ
o o (o309, ~ 5 (5,00
N op,.;(Bn) /N * g
, , 5 1
Lo [Zjnf Zﬂjg)] s G+ Cnj

where G, is defined in (143), @ is between pp, and @, Vm;’@T = mewgoT
between m, and E[m,(W)],

for some m,,

My

Gy (3 35.80) B (3500

g = o5y ()

(155)
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As for (154), there is some 3, between 3, and 3, + % such that

EPn [mj (ﬁn + %’(ppn)} — Epn [mj (ﬂna‘an)] _ OP,,j (Bn) Dp i (Bn) A,O

op,.; (Bn) /vVn op,,j (Bn)
In sum,
\/ﬁmnyj (ﬁn + %7@) o
s (Bt )
where
_ ~ OP,.j Bn =
Un,j, (A) = (14 5,5, (D)) (Zn,j,ﬁn + OMDPn,j (Bn) Ap + vVny1,p,.5 (Bn, @Pn)) ,
nsJ n
(157)
G (Bn+ 22, 0m,) + Vi Er, [m5 (Barop,)] Vot #G
) NS n 14 n J n @ P
Doy, i A) = n,7s 1
n,],ﬁn( ) mej (ﬁn) +< »J ( 58)
~ OP,.j /Bn
g () = —2 Bn) __y (159)

(e 3

Similarly, for k = £, u, it holds that

i (o (5 2.5) -0

oy (/8” + %) = Un,tp, (D),
= (9" - <Bn . %’Q)) = Un,u,p,(A),

oo %)

where
_ “ OP,.k Bn =
Un 6, (D) = (14 N k5, (D)) (Zn,kﬁn + 7;; h E 5 gDPn,k (Bn) Ap+ \/ﬁ’h,Pn,k(ﬁn)> (160)
with
~ op,, ﬁn
o (8) = TPk Oy (161)
Ok (Bn + %>
. Gk <5n + %, SOPn> + Vo A k¥ o Ep, [ (Bry05,)] Vi, @G oo (162)
n n + n,ks
ok:B OP,,j (Bn) g
@n,kz Bn + AﬁZa Pn) — @n,k Bn + A*,pla PPy,

Cn,k: = op, (/Bn) ’
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A (B + 52, 00) = 60 O = X (Bn + 52, 0p)

n) — 5 wu\Pn) = 164
Y1,P,,¢(Bn) oot (B) V1,Ppu(Br) N (164)
Therefore,
infa Un g8, (A) —C (ﬁn + Afﬁ) infa Un,u,By, (A) —¢ (Bn A—Z)
(152) & st. Ae Y2 (B-B,), <0, and st. Ae X2 (B-B,),
i g5, (8) <& (Bt 58) Wi =1, i g5, (8) <& (Bt 58) Wi = 1,0
Denote
A, = ‘f (B-B,) N A, (165)
with A = {z € R?: |z;] < 1,i=1,...,d}. Then the event in (152) is implied by
infA U0, (A) — € (ﬁn + %) inf A 8, (A) — ¢ (5n + %)
st. A e Ay, <0, and st. Ae Ay, <0.
i g (8) <& (Ba+ 52) VG =1, i (B) <& (Bu+ 52) Vj =1,
(166)

Step 3. This step is used only when Assumption 11 is invoked. When this assumption is

invoked, recall we use modification in Section D.3. For each j = 1,..., R; such that

Ty = T =0 (167
let
fij =1— fjtR,, (168)
. 0 if v1,p,,5 (8) = Y1,Pn,j+Rr: (B) =0
Hitha = { T.g.fn (8) otherwise (169)
715,80 (D)0, j+ Ry ,Bn (D) ’
with
T3, 8(A) = V1,75 (Bn) (1 + Mg, (D)) (170)

For each j =1, ..., Ry, replace the constraint indexed by j, that is

iia (8. + 28.0) <o(s+22) am)
of (Bt $h) TN |

Vn
with the following weighted sum of the paired inequalities

(172)

) | i) ()

AM (5n N f) ~ HitRy &%Rl (Bn N ﬁ)
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and replace the constraint indexed by j + Ry, that is

tnsen (0 09) o 2)
+R1 (@H‘ f) . Bn+\/ﬁ | .
with
v (e 30) «ﬁmj+m(ﬁn+%¢) co(m2). am
ST O BT ) BN

It then follows from Assumption 11 that these replacements are conservative because

Mn,j+R, (/Bn \fa ) < M, j (/Bn + &a@)

on (et 38) (Bt A)

and therefore (172) implies (171) and (174) implies (173). Similarly, if Assumption 11.2 is

invoked, for k = ¢, u, replace
_ . Ap
Un, k,Br (A) <c|Bn+ %

T - . A
FTin, e, 6, (B) = Figey i, i), 5, (B) < € <Bn + p) :

with

where [, = 1 — fiy and

fig = { %Mg " if v1,p,.0(B) = 7.1,P",u (B)=0 175
it (D) T n o () otherwise,
with
Tnk,8(A) = 71,P, k (Bn) (1 + Tk, (A)) - (176)

Step 4. Next, I show that we can replace the term v/nv1 p, j (8,) With 77 ;. For j =1, ..., Ji,
My =0=m1; = Vnrp,; (B, (177)

;= =00 = vVnnp,; (Bn) = —oo. (178)

For any constraint j for which 77 ; = 0, (177) yields that replacing v/nv1 p, j (85) in (166) with
7 ; introduces a conservative distortion. Under Assumption 11, for any j such that (167) holds,
the substitutions in (172) and (174) yield

V1, Paj (B> P,) (14 158 (D)) = it RiV1L PR (Brs ©P,) (1 + Tnjr Ry 80 (A)) =0

and therefore replacing this term with 77’{7 ;=0= (e iR is inconsequential. Same applies to
the constraints on 1y, 4, g, and g,

For any j for which 7] ; = —oo0, (178) yields that for n large enough, Vn1,p, . (Bn) can be
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replaced with 7f ;. To see this, note that under Assumption 7, Assumption 10.3, Assumption
12.3 and A € AZ it follows that

n,p’?
0Fui (Bn) .
—=———LDp, i (Bn) Ap=0(1).
OR, (ﬁn) F 7]( ”) P ( )
Together with Lemma 21.1 and Lemma 22, it holds that
P, ( max i js,(A) <0, VA€ Al p> — 1. (179)
]:7‘(1(‘]-:—00 ’
Since é (ﬁn + %) > 0 by construction, iy, j g, (A) < ¢ <Bn + %) with 7} ; = —00 is asmptot-

ically not bingding and thus negligible. We therefore have that for n > N,

infa ﬂn’gﬁn(A) A
P, st. Ae AL <eé <5n + \/ﬁ) , and (180)
n
inf A ’L_Lmuﬁn (A) A
st. Ae Afhp, <é (571 + \/g) +o(1)
lin o (B) < & (B + 52 ¥
infa ﬂn’gngn(A) A
>P, st. Ae Al <é <ﬁn + \/g) , and (181)
tn 5, (8) < & (B + 52) V)
inf A an,u,ﬁn (A) A
st. Ae Al <eé <5n n \})
n
Un,jp, (A) <€ (/Bn + %) V)
where
R OP,.j Bn = *
Un g o (D) = (14 T, (A)) | Zinjip, (D) + =L ( )DPn,j (Bn) Dp+71 5. (182)

Hence, I focus on the event in (181) here and after.

Step 5. I replace @y, ¢ g, and Uy g, With u, g, and u, 4, g,. First, note that if 7110 =0,

infA up 08, (A) A
(181) >P, st. A€ Agyp, <é (Bn + \/B> , and
n
tn 5, (B) < & (B + 52) V)
inf A up 4.8, (A)
t. A e Al <eé ap
s.t. c n,p < cC ﬁn + ﬁ

Un,jp,(A) < ¢ (Bn + %) V5
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where

op, i (Bn)

un,k,ﬁn(A) =(1+ ﬁnakﬁn(A)) (Z’%k’ﬁ"(A) + op, k (5n)

Dp, « (Bn) AP) : (183)

If 77 o = —o0, we have either \/nv1 p, ¢(8n) — —00 or v/ny1 P, u(Bn) — —00 or both, thus

infa un s, (A)
(181) > min { P, st. AeAd géG%+@ﬁ ,
Un,jp, (D) <€ (Bn + %) Vg v
inf A uAn,u,,Bn (dA) A |
P’Vl 8.t € An,p’ < & <,8n + ﬁ) + 0(1 .

Un,j,(A) < ¢ (Bn + %) Vi

In sum, let

Une(Bn, o) =3A €AY g (A) < cunys (A)+75g<counip (A)<eVji=1,...,J¢,
» n,p »7/871 776’"« 170 7]7/371

Unu (Bn,c) = {A € Ai’p DU B, (A) < Cung g, (A) + ﬂ'io <cun;g, (A)<cVji=1,..., J} .

It holds that

oo (5 22)) 1) s (1 39) )}

Step 6. Simplify ¢ (ﬁn + A—z

\f) By definition ¢(-) > 0 and thus ¢, , defined by

. Ap)
Cn,= 1inf ¢ B,+—= 186
P AEA?LW (6 \/ﬁ ( )

exists. Therefore, the event whose probability is evaluated in (181) is implied by the event

infA up 08, (A) infA up 0.8, (A)
st. Ae Al < énp, and st. Ae Al < Cnp.
un,jgﬁn(A) S én,p)vj == 1, ceey J und’gn(A) S émp,Vj = 1, ceey J
(187)
Then by (187) and the definition of U, ; and U, ,, we obtain
P, (en S CIn) > min {Pn (Un,é (an émp) 7& Q) y P (Un,u (ﬁn; én,p) 7é Q))} . (188)

By passing to a further subsequence, we may assume that

DPn (Bn) — D, GPn (Bn) — G,
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for some (J + 2) x d matrix D such that ||D|| < M, and some (J + 2) x K matrix G such
that ||G|| < M. In addition, we may assume that Qp, % Q for some covariance kernel Q. And
Qp, (Bn) — . By Lemma 13,

lilginf min {P, (Upne (Bn,np) #0), P (Unu (Bn,Cnp) #0)} > 1 —a. (189)
The conclusion of the theorem then follows from (148), (149), (188), and (189). O

D.5 Lemmas

In the proof, I focus on
liminf P, (Uy ¢ (B, én,p) # 0) > 1 —
n—oo

and the proof for P, (Upy (Bn, én,p) # ) is similar.
Throughout this Appendix, let (P, f,,60,) be a subsequence as defined in Step 1 in the
proof of Theorem 4. That is, along

{Pmﬁnven} € {(P,ﬁ,@) :Pe Paﬁ € B(P)70 € [)‘P,é(/Bv(PP)v/\P,u(/BNPP)]}

one has
b VYL, P (Br) = ™15 € R d =0,..., 1 (190)
Qp, 5 Q,
Gp, (Bn) = G. (192)

When Assumption 11 is invoked, I use modification in Section D.3. And if
™= 0= TR,

replace the constraints
Zj + pDJA <cg,

Zjt+r, + pDjrr A < c,

with
1 (B){Z; + pD;A} — pjir, (B) {Zjyr, + pDjyr, A} < c
—p5(B){Z; + pDj A} + pjyr, (B){Zj1r, + pDjir A} <c
where
() = 1 if y1,p,.(B,¢p,) = 0 =71.pP, j+r: (B, P,); (193)
Hi N 1Py g+ Ry (Bory) otherwise,

M, Pn,j+Rq (B59Pn)+71,Pn i (B:9P, )
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0 if v1,p,,5(B8) = 0= "1,p,j+r: (B),
Mj4+Ry (B) = Y1,Pn.i (B:¢Py)

Y1, P, i+ Ry (Boopy ) +71,P, i (B9 P,)

. (194)
otherwise,

The same applies to the constraint on Z; and Z,,.

To simplify notation, in the following proof we do not differentiate ¢,u, and j. Moreover,
due to the substitutions in equations (172) and (174), the paired inequalities are now genuine
equalities. With some absue of notation, we index them among the j = J; + 1,...,J. That is,

under Assumption 9,

Jl = {1,...,J1,€,’LL},
Jo={N+1,...,J1+2J2}.

Under Assumption 11.1,

J1 = {2R1 +1,...,J1, ¢, ’LL},
Jo=A{1,... R, i+ 1,....,J1 + Jo}.

Under Assumption 11.2,

Ji1 = {2R1 +1,... Jl},
Jo = {1, o Ry, i+ 1, T+ Jg,e} .

In all three cases,

[Jo] = {lj] : 5 € J2},
J=J1 Ul U[Jo].

Fix ¢ > 0. For each A € R? and 3 € (B, + p//nA) N B, let

mj(A) = Zj +,0DjA+7rij, (195)
mg(A) =7y + ngA,
10, (A) = Zy + pDyA + 77 .
Let Ago’p = lim,— o AZ,p' Let
W(c) = {A e AL iwi(A) <e,Vje J}. (196)

With that convention, for given § € R, define

W (c) = {A € AL L iwi(A) <c+6,V) €T, wi(A) < VjeTU [jg]} : (197)
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Define the |J| 4 2d matrix

[PDPJ (B)]jejlujb

KP(@P) _ [_pDP,;(ﬁ)]jejQ
d
.

Given a square matrix A, we let eig(A) denote its smallest eigenvalue. In all lemmas below, we

assume o < 1/2.

Lemma 13. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11
hold. Then,
liminf P, (U, (B n,p) # 0) > 1 — . (198)
n—oo

Proof. Consider a subsequence along which
lirr_1>inf P, (Ué,n (Bm én,p) 7é @)

is achieved as a limit. For notational simplicity, we use {n} for this subsequence below. Below,

we construct a sequence of critical values ¢/ (/) such that
én (BL) = ¢l (Bh) + op(1) (199)

and ¢l (8) B cpe for any B! € (B, + p//nA) N B, where
e =inf{c € Ry : P(W(e) #0)>1—a}. (200)

The construction is as follows. When ¢« = 0, let cf (3,) = 0 for all 3, € (B, + p//nA) N B
and hence ¢/ (81) B cpe. If ¢z > 0, let

¢y (Bn) = inf {c € Ry : P* (V] (Bn,0) £ 0) > 1—a}, (201)
where
V(8 c) = {A €Al vl 4 (A)<cje J}, (202)
Uhi (8) = oy (8) + pDuj (84) A+ 65 (605 (81)) (203)
nw' (A) =Z5 ; (Bn) + pDuy (B) A

Ut () = 23 (Ba) + pDr (81) A+ 5 (600 (81))

m.;=0 m10=0
se=1" ™70 ge={" ™ (204)

—o0o T <0 —o00 w0 <0

and P? is from the conditional distribution of Z; conditional on the estimators. By Lemma

15.3, this critical value sequence satisfies (199). Further, by Lemma 15.2, ¢k (8,) 2 ¢« for any
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B € (Bn + p//nA) N B. For each 8 € B, let

ch,(B)= inf cf <B + jg) : (205)

Aead

Since the op,(1) term in (199) does not affect the argument below, I redefine c;’w (Bn) as
ch, o (Bn) + 0p(1). By (199) and simple addition and subtraction,

Pn (Un,é (/Bna én,p (/Bn)) 7é Q))
>Po (Unye (Bnsch,, (Bn)) #0) (206)
=P (W (cx) # 0) + [P (Unt (Bns ¢l (Bn)) # 0) — P (W (cr=) # 0)] .

By Lemma 22,
Lo i (A) 5 7~ N(0,5).

And by Assumption 9 and Assumption 12.3,

sup sup IPusk \n) (Bn)

—1
BeBAeA TP,k (Bn)

Moreover, by Lemma 21,

sup sup [[7,,5,5(A)|| = 0

BeB AeA
uniformly in P, and by Lemma 15, cf% o (Bn) Ly e Therefore, uniformly in A € A, it holds
that

(2o @), {inst@), e,y (60)) 4 @ 0, cro. (207)

In what follows, using Lemma 1.10.4 in Van Der Vaart and Wellner (1996) I take

(z:;(m, m(8),{D5 ;) ; sz)

to be the almost sure representation of the left hand side of (207), defined on some probability
space (Q,F, P) such that (Z%(A),n%(A),ct) “3 (Z*,0, cp+), where Z* 2 7. For each A € R,
we define

OP,,j (671)

op,.j (Bn) D (Bu) &+ WLJ} ’

Up j g, (B) = (1 +nm,,(A)) {ZZJ(A) +p
W} (A) = 2 + pD;A + 7,

where we used that by Lemma 23.1, k, '\/ny1.p; (Bn) — k5, 'v/ny1,p5 (B),) = o(1) uniformly over
By, € (Bn + p/v/nA) N B and therefore 77 ; is constant over this neighborhood. Similarly, let

Us (Burc) = {A € AL 5, (8) <, Vi€ T} (208)

W* (ere) = {A € AL wi(A) < ep, Vi € J} . (209)
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It then follows that equation (206) can be rewritten as

P ({Un (Bns én.p (Bn)) # 0})
>P (W (cxe) # 0) + [Pn (Uy, (Bny ) # 0) — P (" () # 0)] .- (210)

By the definition of ¢+, we have
P (" (cre) £ 0) > 1—

Therefore, we are left to show that the second term on the right hand side of (210) tends to 0
as n — oo. Note that

[P (Uy (Bny ) # 0) = P (W" (cr) # 0)]
<P ({UL (Bn, ) = 0} N {0 (cre) # 03) + P ({Up (Bns c) # 0 0 {2 (ere) = 0}) . (211)

The conclusion holds because (211) converges to zero by Lemma 14. O

Lemma 14. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11
hold. Let (P, Bn,0,) have the almost sure representations given in Lemma 15. For any n > 0,
there exists N € N such that

B ({Ug (Bny ) # 03 0 {2 (er-) = 0}) < 0/2 (212)
Bo ({Uy, (B c) = 0 0{W" () # 0}) < 1/2, (213)

for alln > N, where the sets in the above expressions are defined in equations (208) and (209).

Proof. Let J* = {j eJ:mi,; = 0}. Observe that for j =1,...,J, if 7] ; = —oo, the correspond-
ing inequalities

OP,,j (Bn)

Uy, 5, (A) = (1+n,(A)) {ZZ,J‘(A) + Pm

Dry () A+ m} <
Wj(A) = Z; + pDjA + 7] j < e

are satisfied with probability approaching one by similar arguments as in (179). Hence, we can

redefine the sets of interest as
Ui (Busci) = { A € AL 55, (8) <5,V €T} (214)
* _ d R ] . *
W* (cp) = {Aerqp.mj(A) < Vi ET } (215)
I first show (212). I bound the left hand side of (212) as

P ({U} (B 2) # 0} N {2 (e) = 0))
<P ({U3 (Bn.c3) # 0} 0 {207 (cer) = 0} ) (216)
+P ({m*” (er) # (2)} N {W* (ere) = @}) : (217)
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following from P(AN B) < P(ANC)+ P(BNC°) for any events A, B, and C. I will then
specify ¢ such that (216)< 7 and (217)< 4. Lemma 17 (259) implies that there is some § > 0
such that

P ({mw*v” (ere) # @} O (ere) = @})
<sup P ({QB* (c) A0} N {QI]*’_(S (c) = (Z)}) <n/2. (218)

c>0

Next, define the events

(.8, (A) = ) = (WF(A) = exv)

A, (0) =
©) {zsz

).

with § specified in (218). By Lemma 16 (257), for any n > 0 there exists NV € N such that
P(A,) <n/2,¥n > N. (219)

Define the event L,, = {U} (Bn,c}) € W* (cr+ +6)} and note that AS C L,,. The right hand
side of (216) can further be bounded as

P (U5 (B 5) # 0} 0 {27 (ee +8) = 03) < P (U (Buy ) & 20" (e +6))
—P(L)<P(A)<n2 Vn>N, (220

where the penultimate inequality follows from Af, C L,, as argued above, and the last inequality
follows from (219). Hence, (212) follows from (216), (217), (218), and (220).

To establish (213), I distinguish three cases.

Case 1. Suppose first that Jo = (), and hence one has only moment inequalities. Define the
event

Ryp = {* (cx+ — 8) C Uy (B i)} - (221)

and note that A C Ry,. The result in equation (213) then follows by Lemma 17 (259) using
again similar steps to (216)-(220).

Case 2. Next suppose that |J2| > d. Note that, by Lemma 19, there exists N € N such that
for all n > N, ¢l (#) is bounded from below by some ¢ > 0 with probability approaching one
uniformly in P € P and 8 € B(P). This ensures ¢y~ is bounded from below by ¢ > 0. Note
that Af C Egn, where Egn is defined as in (221), and therefore the same argument as in the
previous case applies using Lemma 17(261).

Case 3. Finally, suppose that 1 < |Jo| < d. Recall that, with probability 1,

cer = lim ¢, (222)

n—oo

and note that by construction cz« > 0. Consider first the case that cz« > 0. Then, by taking

0 < cp+, the argument in Case 2 applies.
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Next, consider the case that c;+ = 0. Observe that

P {Uy; (Bn,c) = 0} N {W" (cnr) # 0}),
<P ({U; (B, i) = 0y n {am=30) £ 0}) + P ({20 -0(0) = 0} n {20 (0) £ 0}) . (223)

By Lemma 17, for any n > 0 there exists § > 0 and N € N such that

P ({m*ﬁ—‘*(o) - @} N {20*(0) @}) <n/3

for all n > N. Therefore, the second term of (223) can be made arbitrarily small.
I now consider the first term of (223), and it contains the following four steps.
Step 1. More notation. Let g be a |J| + 2d vector with

_Z.’ GJ,
gj = i J (224)
1, Jg=1J+1,..., |3 +2d,

where I use that 77 ; = 0 and the last assignment is without loss of generality because of the
considerations leading to the sets in (214), (215). For a given set C' C {1,...,|J] + 2d}, let the

vector g¢ collect the entries of g¢ corresponding to indices in C. Let

[ij]jeJhqu
K| | pIJ]JEJb . (225)
d
-y

Let the matrix K¢ collect the rows of K corresponding to indices in C. Let C collect all size d
subsets C of {1,...,|J| + 2d} ordered lexicographically by their smallest, then second smallest,
etc. elements. Let the random variable C equal the first element of C s.t. det K€ # 0 and
AC = (KC)_1 g¢ € 2W*%79(0) if such an element exists; else, let C = {|J] + 1,...,|J| + d}
and AY = 14, where 14 denotes a d vector with each entry equal to 1. Recall that 20%79(0)
is a (possibly empty) measurable random polyhedron in a compact subset of R?, see, e.g.,
Molchanov and Molchanov (2005) (Definition 1.1.1). Thus, if 20%7°(0) # @, then 20*79(0) has
extreme points, each of which is characterized as the intersection of d (not necessarily unique)
linearly independent constraints interpreted as equalities. Therefore, 207%(0) # @) implies that
AC € 920%79(0). Note that the associated random vector AC is a measurable selection of a
random closed set that equals 20%7°(0) if 20%79(0) # () and equals A otherwise, see, e.g.,
Molchanov and Molchanov (2005) (Definition 1.2.2).
Let gn, be a |J| 4+ 2d vector with

i/ (1+n (A)) —2Z: (A) ifjel
gn,i(A) = ( ! ) N (226)
1, ifj=J+1,....]3 +2d
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using again that 77 ; = 0 for j € J*. For each P € P, let

523 D)

(_) Jj€I1Ul2

_ opn,i (B 2

Kp(8.5,p) = [—Popniw)l?mw) o | (227)
Iy
—1I

For each n and A € A, define the mapping ¢, : A — R‘[jioo] by

Sn(A) = (K& (Bns B (B A),0)) "~ ¢S (A), (228)

where the notation 3 (8,, A) emphasizes that 3 depends on 3, and A because it lies component-
wise between (5, and 3, + A—Z.

Step 2. I show that ¢, is a contraction mapping and hence has a fixed point. For any
A, A’ € A write

[ 6n(8) = 6 (&)
|| (K, (80sB (B A),9)) ™" 65 (8) = (K5, (BB (B &) p))
<[ (K, (8.5 (B ) 0) 7l (2) = o5 ()]

|| (B, (BB (B ). )) ™ = (KF, (BB (Bn ) 0) ||l ()]

g5 (A")

(229)

)

where || - ||2 denotes the spectral norm (induced by the Euclidean norm). By Assumption 12.2,
for any nn > 0,k > 0, there is N € N such that

Py (||gn () = gn(AN)]| < k[|a - a]))
=P, (||Z5°(A) — 23 (A)|| < k||A = A'||) 21—, ¥n > N.

Moreover, for any n there exist 0 < L < co and N € N such that Vn > N

p ( sup Hgg (A" < L) >1—n. (230)
AleA
For any invertible matrix K, HK‘1H2 = (min {y/a : o is an eigenvalue of KK’})™". Hence,
by the proof of Lemma 18 and the definition of C, for any n > 0, there exists 0 < L < oo and
N € N such that
P(|x9)7, <2)z1-nwm=w.

By Johnson and Horn (1985) (ch. 5.8), for any invertible matrices K, K such that HK‘I(K ~ K) H2 <
L,
|7 - B

R T
R )

f(—1H2. (231)
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By the assumption that Dp, (3,) — D and Zl;"’i Egg — 1 and Assumption 7, for any n > 0,

there exists N € N such that

Eup HKP ( (5717 )7/))_KCH2S77,VTLZN

By (231), the definition of the spectral norm, and the triangle inequality, for any n > 0, there
exist 0 < L1, L9 < oo and N € N such that

P (sup |05, (368 0)) |, < 21 )

AcA

o (e, g 5 50,007 - ()7 22 )

AEA
2P, || (597, < L. = [, =
2= k) (RS, (3 (8 2) ) - )|

e «In
sup [|KE, (B (8w, A),0) — K \\2_L2>

>1—2n,Yn > N, (232)
Again by applying (231), for any k£ > 0, there exists N € N such that

P (|5, 8 wn,m))‘l - (K%, (3 <Bn,A'>>>‘1H < kfla-a)

>P, <sup H(KJCD” (Bn, A H }A Al <k|A- A/H> >1-mn, VYn>N, (233)
AcA

where the first inequality follows from

|G, (B(Bn,A)) = K§, (B (Bns A))|ly < Mp||B (B, A) = B (Bn, A) || < Mp®/v/n||A = A

by Assumption 7, and the last inequality follows from (232).
By (229)-(230) and (232)-(233), it then follows that there exists a € [0,1) such that for any
n > 0, there exists N € N such that

p (‘(bn(A) - ¢n (A/) >~

VA,A"€e A)>1-1n, Vn>N. (234)

This implies that with probability approaching 1, each ¢,(+) is a contraction, and therefore by
the Contraction Mapping Theorem it has a fixed point (e.g., Pata and others (2019) (Theorem
1.1)). This in turn implies that for any n > 0 there exists a N € N such that

P (3A£ AL =4, (Ag;)) >1-1n,Yn> N. (235)
Step 3. I show that AC and A, are close enough. Next, define the mapping

Un(A) = (K€) 7' g€ (236)
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This map is constant in A and hence is uniformly continuous and a contraction with Lipschitz
constant equal to zero. It therefore has AC as its fixed point. Moreover, by (228) and (236)
arguing as in (229), it follows that for any A € A,

() = Gu(A)I| < |[(K, (BusB(Bus8),0)) | 16 = o5 (2]
]| )T = (B, (BB (B ) ) Nl

By (224) and (226)

o — g (A)]| < max

—Zj —cp/ (L+155(D) + 25, 5(D)]

jeJ*
< max 7t -7 (D) +%§\c;;/ (L+m5,(A)]- (237)

a.s

Moreover, Z} (A) = Z* and (222) implies ¢}, — 0 so that we have

sup [|g° — g5 (A)[| = 0.
AcA

Further, by (226), Dp, — D and, Assumption 7, for any n > 0, there exists N € N such that

sup || (K€) ™" = (K5, (82,8 (8u,8)p)) ||, <mvm = NV, (238)
AeA 2

In sum, by (230), (232), and (237), (238), for any 7, v > 0, there exists N > N such that

P <sup lon(A) = du(A)] < ) >1—nn>N. (239)
AEA

Hence, for a specific choice of v = k(1 — a), where a is defined in equation (234), we have that
supaca [[¥n(A) — ¢n(A)]| < k(1 — a) implies

= [ (a5) = 0 (1)
< [ln (A$) = 6n (A5 +|
<r(l-a)+alaf-a)

- o

o (%) = o (A1)

< K.

Rearranging terms, we obtain HA% — A/
Step 4. I complete the proof. Note that by Assumptions 7 and 12.1, for any § > 0, there
exists kg > 0 and N € N such that

P sup ‘uz’jﬂn(A) — Uy i B, (A <é)=1-nVn>N. (240)
[A—A7||<ks

For A¢ € 20%7%(0), one has
w? (AS) +6 <0,j €I (241)
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Hence, by (219), (222), and (240)-(241), HAg -

for each j € J; we have

g (A ) n (Bn) < up g, (AG) = ¢ (Ba) +8/4 < w3 (A7) +6/2 <0.

For j € {|J1|+1,...,|J1| + 2|J2|}, the inequalities hold by construction given the definition of
C. In sum, for any 1 > 0 there exists § > 0 and N € N such that for all n > N we have

P ({05 (Bu i) = 0 0 {20775(0) £ 0}) < P (AL € Uy (6, c5) . 3AE € 977°(0))
5 c
< P ({ sup 190(8) = @) < mal1 = )N 4G} ) <,
AcA
where A° denotes the complement of the set A, and the last inequality follows from (219) and
(239). O

Lemma 15. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or
11 hold. Let {P,, fn,0n} be a sequence satisfying (190)-(191). Then, for any {f,} such that
Bl € (Bn + p//nA)N B for all n, it holds that

1. For any c > 0,
Py (Vi (Bis ) #0) = P(2(c) #0) =0
with probability approaching 1 ;
2. If cpr > 0,ck (B)) B e
3.
én (B1) = ¢y (Bn) + op(1).

Proof. (i) Throughout, let ¢ > 0 and let {3/} be a sequence such that 3/, € (8, + p//nA)NB

for all n. By Assumption 7, ‘ D(B.) — Dp, (5n)H 0. Further, by Lemma 23, &, ; (53, 5 -

Therefore,

(2 (8) . D (81) n (81)) 1HXi}2, S (2,D,m) (242)
for almost all sample paths {X;}:°,. By Lemma H.17 in Kaido et al. (2019), condltlonal on the
sample path, there exists an almost sure representation (Zn, Dn, §n) of < o (B Brh) gn ( 57’1))

defined on another probability space (€, F, P) such that (Zn,Dn,§n> = ( 2(6’) (ﬁ’) én (67’1))

conditional on the sample path. In particular, conditional on the sample, (f) CARS (ﬁn)) are

non-stochastic. Therefore, we set (Dn,én) = (ZA? 8L, én s, )) — a.s. The almost sure rep—
a.s

resentation satisfies (wa f)n,én’j) = (Z, D,m) for almost all sample paths, where Z 2 7.

The almost sure representation (ZZ, Dy, én) is defined for each sample path 2> = {z;};2,, but

we suppress its dependence on x™> for notational simplicity. Using this representation, define

Tng,on (8) = L5, + pDi A + ¢ (&,j) ; (243)
ﬁé,é,ﬂg(A) = zi,@ + pDy A,
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where 7 £ Z, and Zb — 7, P — a.s. conditional on {X;}5°,. With this construction, one may

write

<P <‘~/n] (Bl.c) =0DNW(c) # (/)> +P (an (Bl.c) # 0 NW(c) = (Z)) : (244)

Let

A, = {(Z) € Q: sup max 6111,3‘,6;(A) — rbj(A)‘ > 5}.

AcA JET*

Let

<n}.

Note that, P,(E) > 1—n for all n sufficiently large by Assumption 7 and Lemma 23. On E, we
9 (ns) — 7t

B = {{az | 02) = D] < max]o; (60 (1) i,

< n,P — a.s. Below, we condition

therefore have HD" — DH < n and max;ej«
on {X;};2, € E. For any j € J*,

Ly~ Zj’ +p HDj,n - DjH Al + |¢] (fn,j) - Wf,j‘ < (2+p)n,

g, (B) = 0,(8)] <

uniformly in A € A, where we used ZfL — Z, P - a.s. Since 7 can be chosen arbitrarily small,

this in turn implies

P(An) <n/2,

for all n sufficiently large. Note also that suppca max;cjy

W(c) C VI (B, c+0), and hence A is a subset of

f);z,j,ﬁ;L(A) —w;(A)| < ¢ implies

Using this,

P (VI (B +6) = 0N () #0) < P (Ble) ¢ V] (Bhoe+9)) (246)
= P(Ly) < P (An) <n/2,

n
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for all n sufficiently large. Also, by Lemma 17,
P (VI (Bhc+8) 00T (8,,¢) =0) <n/2, (247)

for all n sufficiently large. Combining (245), (246), (247), and using P, (F) > 1 —n for all n, we

have

/Ep(v,{ (B),c) =0NW(c) ;A@) dPn~|—/

<n(l—mn)+n<2n.

P (VI (B c) = 0N 2(c) £0) dP,

c

The second term of the right hand side of (244) can be bounded similarly. Therefore,
[P (Vi (Bhse) #0) = P(W(e) #0)] = 0

with probability (under P,) approaching 1. This establishes the first claim.
(ii) By Part (i), for ¢ > 0, we have

P: (VI (B,c) #£0) — P(2W(c) #0) >0

Fix ¢ > 0, and set
C—Zj, jeJ,

9j = ‘
1, Jg=1J+1,...,|J) +2d,

Mimic the argument following (247) and apply Lemma 17. Then, there is § > 0 such that

[PQU(c) # 0) — P(W(c— 8) # 0)] = P ({20(c) # B} N {W(c — 8) = 0}) <1
[P (Q(c+8) #0) — P(W(e) # B)] = P ({W(e +0) # 0} N {2W(e) = 0}) <

which therefore ensures that ¢ — P(20(c) # 0) is continuous at ¢ > 0.

Next, we show ¢ — P(20(c) # 0) is strictly increasing at any ¢ > 0. For this, consider
¢>0and ¢c— 9 > 0 for 6 > 0. Define the |J| vector e to have elements e; = ¢ — Z;,j € J.
Suppose for simplicity that J* = { jed ni; = 0} contains the first J* inequality constraints.
Let eJ” denote the subvector of e that only contains elements corresponding to j € J*, define

DY correspondingly, and write

DI el” 1.
K=| I [.9=|p-1g|,7=| 04 |- (248)
-1, p-1q O

By Farkas’ lemma (R. Rockafellar (1970) Theorem 22.1) and arguing as in (268),

P ({W(c) # 0} N{W(c—6) = 0})
=P ({#'g>0,Yue M} n{py(g—067r)<0,3IpeM}), (249)
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where M = { IS Rf“d WK = 0}. By Minkowski-Weyl’s theorem (R. T. Rockafellar and
Wets (2009) Theorem 3.52), there exists {I/t eM,t=1,... ,T}, for which one may write

T T
M = {M:u:bzaﬂ/t’b>07at Zo’zatzl}_
t=1 t=1

This implies
Wg>0VueMevg>0vte{1,...,T},

W(g—907)<0,3pe Mevg<ir,3te{1,...,T}.

Hence,
(249) =P (0 < v*g,0 < g < ovV'r, Vs, 3t) (250)

Note that by (248), for each s € {1,...,T'},

J*+2d
vy =Y (cly = Zp) +p Y v,
j=J*+1
g+
v = Z v,
j=1
Hence
J* J*+2d
hY = cZus’j +p Z T
j=1 j=J*+1

J*
hSL =(c—9) Zl/s’j
j=1

where 0 < hl < WY for all s € {1,..., 7} dueto 0 < ¢ — 6 < c and v* € Rf“d. One may
therefore rewrite the probability on the right hand side of (250) as

P (O <v¥g,0<vVg < 67, Vs, Ht)

—p (VS’J*’ZJ* < WY hf < 25 < B s, 3) >0, (251)

where the last inequality follows because Zj+’s correlation matrix {2 has an eigenvalue bounded
away from 0 by Assumption 9 and 11. By (249), (250), and (251), ¢ — P(2(c) # 0) is strictly
increasing at any ¢ > 0.

Suppose that ¢« > 0, then arguing as in Lemma 5.(i) of D. W. K. Andrews and Guggen-
berger (2010), we obtain ¢l (5,) 2 e

(iii) Begin with observing that one can equivalently express ¢, (originally defined in (53))
as ¢(B) =inf{c € Ry : PS(V5(B,¢c) #0) > 1 — a} where

Vo (Bsc) = {A €Al v s (A)<cje .,]]}, (252)
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v 5 (D) =75 (B1) + pDny (B1) A+ &nj (Br) - (253)

Suppose first that Assumption 9 holds. In this case, there are no paired inequalities, and an
differs from V7 only in terms of the function ¢} used in place of the GMS function §. In
particular, ¢7(§) < ¢ for any j and &, and therefore ¢, (8,) > ¢! (B,) by construction.

Next, suppose that Assumption 11 holds. The only case that might create concern is one in
which

m,; € [-1,0) and 71 j4 R, = 0.
In this case, only the j + R;-th inequality binds in the limit, but with probability approaching
1, GMS selects both in the pair. Therefore, we have

* . * .
7T17j = —0Q, and 7Tl7j+R1 = 0,

én,j (/8;7,) = 07 and én,j+R1 (ﬁ;) = O’

so that in V! (8, ¢), inequality j + Ry, which is

f%j-i—lh (/37/1) + pf)n,j—i-Rl (,87/1) A <c

is replaced with inequality
Ly, (57,1) - pf)n,j (541) A <eg,

as explained in Section D.3. In this case, ¢, (8,) > ¢! (3,) is not guaranteed in finite sample.
However, let v2” be as in (203) but for j € Jg, replacing [j]-th component v/ ;) With —vfw-.
Define V,/” as in (202) but replacing v} with v1”. Define

AP (B,) = inf {c € Ry : P* (VP (B,0)) > 1—al.

By construction, &, (8},) > cLF (8),) for any B, € (8, + p//nB%) N B. Therefore, it suffices to

IP
n
IP (! I (pry\ P : ;
show that ¢, (81,) — ¢;, (B;,) = 0. For this, note that Lemma 20.3 and 20.4 establishes

|28 (82) + D gims (8) A+ Zhy (81) + D (81) A = op(1),
€EAQAn,p
for almost all sample paths {X;}:2,. Therefore, replacing the j+ R;-th inequality with the j-th
inequality in V/” is asymptotically negligible. Mimicking the arguments in Parts (i) and (ii)
then yields

ctf (ﬁ;) Ly pe.

This therefore ensures ¢LF (8.) — ¢k (8.) 5 0. O

Lemma 16. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11
hold. For any e,n >0 and 3], € (B, + p/v/n[—1, 1]d) N B, there exists N' € N such that for all

n> N,
P (sup max (u;Jﬁn(A) —¢,) — max (05 (A) — ¢q+)
AcA

jel jer M

> 5) <, (254)
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P <Sup
AcA

;(A) — oL (AY >e) <n, wp. 1. 255
oo (&) — ot (8)] 2 2) < wp (255)

Proof. We first establish (254). By definition, 7] ; = —oo for all j ¢ J* and therefore

P max (u* ;5 (A) — ¢*) — max (0% (A) — cpe )| >

(ggg nax (u, i, (A) = ¢) —max (w3(A) —cr) _6>

=P m g, (A) =) —max (w3 (A) —cqp )| > €. 256
<§gg max (uy 55, (8) =€) — max (15 (A) — crr) _E> (256)

Hence, for the conclusion of the lemma, it suffices to show, for any € > 0,

25):0.

For each A € R% define r,, 3, (A) = (u;jﬁn(A) - c*) - (m’f(A) - cTr*). Using the fact

lim P ( sup

n—00 (AEA max (uz,j,ﬁn(A) - c:}) — max (m’f(A) _ cﬂ*)

jET* jers »

n J
that 77 ; = 0 for j € J*, and the triangle and Cauchy-Schwarz inequalities, for any A €
AN % (E—ﬂn) and j € J*, we have

* * O'F7' (Bn) 2 *
P (D) < |23, 56, — Z5| + p 7@; (5. PP (Bn) = Dj|| 1Al +|¢}, — car
. op,.j (Bn) -
16, (AN Zn i g, (A) + 222320 B (B) A
|77 Jvﬁn( )’ 7]7ﬁn( ) O—Pn,j (677,) P, 5] (/B ) p
—op(1) (257)

where the first equality follows from ||A| < v/d, Dp, (8,) — D due to Dp, (8,) — D, Assump-
tion 7, Assumption 8, and 3, being a mean value between 3, and 3, + Ap/\/n. We also note
that ‘ Z;,j,BnH = Op(1),||Dp;(B)| being uniformly bounded for f € B(P) (Assumption 8.1),
and Lemma 21.

Note that when paired inequalities are merged, for each 7 = 1,..., R; such that ﬂ'ij =
0 = 7 ;. g, We have that |fi; — p;| = op(1), where fi; and p; were defined in (168)-(169) and
(193)-(194) respectively. By (257) and the fact that j € J*, we have

sup

max (ujz,jﬁn (A) = ¢,) — max (w05 (A) — ¢r) | < sup max |ry j3,(A) =op(1).  (258)
AcA

JEI* jer ~ 7 A€A JET*

The conclusion of the lemma then follows from (256) and (258). The result in (255) follows

from similar arguments. O

Lemma 17. Let Assumptions 7, 8, 6, 10 hold. And suppose Assumption 9 or 11 hold. For any
By, € (Bn+p/vnA)NB,

1. For any n > 0, there exist § > 0 such that

sup P ({20(c) # 0} 0 {27(c) = 0}) <. (259)

c>0
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Moreover, for any n > 0, there exist § > 0 and N € N such that

sup P ({Vil (B1,¢) 20} 0 {Vil0 (81,¢) =0}) <, va>N. (260)

c>0
2. Fiz ¢ > 0. Then for any n > 0, there exists § > 0 such that

sup P ({(c) # 0} N {W(c—0) =0}) <. (261)

czc

Moreover, for any n > 0, there exist 6 > 0 and N € N such that

sup P5 ({V,L (Bl,c) #0} n{V,! (B,,c—38) =0}) <n, VYn>N. (262)

c>c

Proof. We first show (259). Any inequality indexed by j ¢ J* is satisfied with probability
approaching one by similar arguments as in (179) (both with ¢ and with ¢ — ¢ ). Hence, one
could argue for sets 2(c), W (c) but with j € J*. To keep the notation simple, below I argue
as if J = J*. Let ¢ > 0 be given. Let g be a |J| + 2d vector with entries

c—2Z;, 7€,
g; = . (263)
1, jg=1J+1,..., |3 +2d,

recalling that 77 ; =0 for j = [J1| +1,...,|J|. Let 7 be a (|J| + 2d) vector with entries

1, j=1,....1I
T = J |1| (264)

0, j=|Til+1,...,13 +2d.
Then we can express the sets of interest as

W(c) ={A: KA < g}, (265)
W)= {A: KA <g—or} (266)

By Farkas’ Lemma, e.g. R. Rockafellar (1970) (Theorem 22.1), a solution to the system of
linear inequalities in (265) exists if and only if for all p € Riﬁd such that ©/K = 0, one has
#'g > 0. Similarly, a solution to the system of linear inequalities in (266) exists if and only if
for all 4 € RFH24 such that /K = 0, one has p/(g — 67) > 0. Define

M= {p eI K = o} (267)
Then, one may write

P ({25(0) # 0} 0 {2070 (¢) = 0 })
=P ({19 >0,Yue M}n{y(g—dr)<0,3uec M})
=P ({9 >0,Yue M} n{y'g<opr,3peM}). (268)
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Note that the set M is a non-stochastic polyhedral cone. By Minkowski Weyl’s theorem (see,
e.g. R. T. Rockafellar and Wets (2009) (Theorem 3.52)), there exist {v' € M,t=1,...,T},
with T' < oo a constant that depends only on |J| and d, such that any u € M can be represented

as
T
— t
n= b § -,
t=1

where b > 0 and a; > 0, ¢t =1,...,T, Zthl a; = 1. Hence, if p € M satisfies p'g < op'T,

denoting " the transpose of vector v!, we have

T T
g a'g <6 E at'r
t=1 t=1

However, due to a; > 0,Vt and v' € M, this means v¥g < dv¥r for some t € {1,...,T}.

Furthermore, since v* € M, we have 0 < v¥g. Therefore,

P({ig>0VueM}n{pg<éur,3peM}) (269)
T
<P (0 <vg<ofr,3te{l,... ,T}) < ZP (0 <Wg < 51/“7) .
t=1
Case 1. Consider first any t = 1,...,7T such that v' assigns positive weight only to con-

straints in {|J] + 1,...,|J| + 2d}. Then

|| +2d

t/ t
v'g = E Vi,
J=1J1+1
|J|4-2d

tr ¢
vt =9 Z v;T; =0,
J=lJ+1

where the last equality follows by (264). Therefore P (O <vg <Y 7') =0.

Case 2. Consider now any ¢t = 1, ..., 7T such that v! assigns positive weight also to constraints
in J. Recall that indices j = Jo U [J2] correspond to moment equalities, each of which is written
as two moment inequalities, therefore yielding a total of 2|J2| inequalities with Dy = —Dj for
j € Ja, and:

- c—1Zj jels, (270)
c+Zy JeE [J2] .

For each v, (270) implies
¢ t t_ ot
D vigi=c >, Vit (Vs
j€J2U[J2] j€J2U[J2] j€l2

For each j € J1 U Jo, define

1t y c
~t — { Vjt t ] Jl (271)
Vit JE Ja.
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/!
St (st St
We then let 7* = (Vn’l, - ’Vn7IJ1|+IJ2|> and have

13]+2d
Vo= > UZi+ced vi+ Y v (272)
JeJ1Ul2 JjeJ J=1J]+1

Case 2-a. Suppose 7' # 0. Then, by (272), Z:—:ﬁ is a normal random variable with variance
(o 7)72 7"Qit. By Assumption 9 and Assumption 11, there exists a constant w > 0 such that
the smallest eigenvalue of © is bounded from below by w for all 3],. Hence, letting || - ||, denote

the p-norm in RFWI+24+2 e have

s w |17 w

() = (3] +2a)2 oty — (Bl +2d)%

Therefore, the variance of the normal random variable in (269) is uniformly bounded away from
0, which in turn allows one to find § > 0 such that P (O < % < 5) <n/T.

Case 2-b. Next, consider the case 7 = 0. Because we are in the case that v assigns positive
weight also to constraints in J, this must be because V]t- =0 for all j € J; and V§ = I/fj] for all
j € Ja, while 1/§ # 0 for some j € Jo. Then we have 3,y V§g >0, and ),y V]t-Tj = 0 because
7; = 0 for each j € Jo U [Jo]. Hence, the argument for the case that v' assigns positive weight
only to constraints in {|J| 4+ 1,...,[J| + 2d} applies and again P (0 < v¥g < év¥'7) = 0. This
establishes equation (259).

As for (260), observe that the bootstrap distribution is conditional on X1, ..., X,,. Therefore,
the matrix K, defined as the matrix in equation (227) but with D,, replacing Dp, can be treated
as nonstochastic. This implies that the set Mn, defined as the set in equation (267) but with
K, replacing K, can be treated as nonstochastic as well.

By an application of Lemma D.2.8 in Bugni et al. (2015) together with Lemma H.17 (through
an argument similar to that following equation (242), Z% 4 7 in [°°(©) uniformly in P con-
ditional on {Xy,...,X,}, and by Assumption 7 D, 8 Py D, for almost all sample paths.
Set
¢ — @5 (&nyj (BR)) — L3 g 5o J €T,

gp.; (Br) =
’ 1, J= 1041, 13 +2d,

and note that

07 (&nj (ﬁﬁl))‘ <nforall j €J* and Z; 5 | {Xi}2y 4 N(0,€). Then one can
mimic the argument following (263) to conclude (260).

The results in (261)-(262) follow by similar arguments, with proper redefinition of 7 in
equation (264). O

Lemma 18. Let Assumptions 7, 8, 6, 10 hold. And suppose Assumption 9 or 11 hold. Let
C collect all size d subsets C of {1,...,|J| + 2d} ordered lezicographically by their smallest,
then second smallest, etc. elements. Let the random wvariable C equal the first element of
C s.t. detKC £ 0 and AC = (KC)_1 g¢ € WH9(0) if such an element exists; else, let
C={J]+1,...,|J|+d} and A® =14, and K, g and 205~ are as defined in Lemma 14. Then,
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for any n > 0, there exist 0 < e, < oo and N € N s.t. n > N implies
P (*(—6) # 0, |det K| < e,) <17 (273)
Proof. (273) can be bounded as follows:

P (2770(0) £ 0,]det K¢ < &) < P (3C € C: A% € A, [det K€| < =, )

< > P(A%eA)

CeC:|det KC|<ey,

Y P(A%ca)

CeC:lal|<e/

IN

where a© denote the smallest eigenvalue of K€K, Here, the first inequality holds because
20%~% C A and so the event in the first probability implies the event in the next one; the second
inequality is Boolean algebra; the last inequality follows because ’det K C‘ > ‘ac‘d/ 2, Noting

~ 2d
that C has ( 91+ J ) elements, it suffices to show that

Ui

Thus, fix C € C. Let ¢© denote the eigenvector associated with o© and recall that because
KCKC i

‘ac‘gei/dﬁP(AceA)gﬁz

(O KCKC| <2t — P ((KC)’lgC c A) < 7.
Now, if ‘qC’KCKC’qC| < 5,27/d and (KC)_1 g¢ € A, then the Cauchy-Schwarz inequality yields
‘qC/gC‘ _ ‘qC/KC KC ‘ < \[61/d
hence
P <(KC)_1gC c A) <P <|q0’gc| < \/@3,17/‘[> .

If ¢© assigns non-zero weight only to non-stochastic constraints, the result follows immedi-
ately. If ¢ assigns non-zero weight also to stochastic constraints, Assumption 9 (or 11) and

Assumption 12 yield

eig(§2)

= Varp (q g )

P (‘qclgc‘ < \/gsql/d) =P (—\/&El/d < qC/gC < \/&E}/d>
Qfel/d

7
2w

Y

w

| \/

(274)
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where the result in (274) uses that the density of a normal r.v. is maximized at the expected

_ s\ d
value. The result follows by choosing ¢, = (77 2\2/3”) . O

Lemma 19. Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11 hold. If
|J1] > 1, |J2| > d, or if |J2| > d, then 3¢ > 0 s.t.

liminf inf inf P (c! >c)=1.

n—o00 PeP BEB(P) (ea(8) 2 ¢)
Proof. 1 first consider the case where J; # () and |J2| > d. Fix any ¢ > 0 and restrict attention
to constraints {|J1| + 1,...,|J1| + d,|J1| + [J2| + 1,..., |J1| + [J2| + d}, i.e. the inequalities that
jointly correspond to the first d equalities. We separately analyze the case when (i) the cor-

responding estimated gradients {f?n](ﬂ) =1+ ]+ d} are linearly independent

and (ii) they are not. If {ﬁn](ﬁ) cj= I+ 1, T+ d} converge to linearly independent
limits, then only the former case occurs infinitely often; else, both may occur infinitely often,
and we conduct the argument along two separate subsequences if necessary.

For the remainder of this proof, because the sequence {f,} is fixed and plays no direct
role in the proof, we suppress dependence of f)mj (B) and Z;, ;(B) on B. Also, if C'is an index
set picking certain constraints, then 1“),(;‘ is the matrix collecting the corresponding estimated
s C
gradients, and similarly for Z

Suppose now case (i), then there exists an index set
Cc{lll+1,..., 31 +d,|J1| + [Ja| +1,...,|J1| + |J2| + d}

picking one direction of each constraint s.t. ﬁml is a positive linear combination of the rows
of [),C; . (This choice ensures that a Karush-Kuhn-Tucker condition holds, justifying the step
from (275) to (277) below.) Then the coverage probability P* (V,/(83,c) # 0) is asymptotically
bounded above by

P ({acpan: Dua<e-25,) €1} #0)
({AeRd DpsA<ec— Zs],jec}yé@) (275)
< (cld _ 7€ ) <ec- Zf’%1> (276)
<< ,?)_1 1d> c>Zpq— cﬁ;’l (157?)_1 Z;C)
(1- 2% (ﬁs‘)‘l )e g, eny, (59) 7
—ps Yo z \/7% (277)
<1 + ‘ﬁ;m (59) "1, ) c
<® + 0,(1) (278)

Here, (275) removes constraints and hence enlarges the feasible set; (276) solves in closed form;
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and (278) uses that by Assumption 9 or 11.

In case (ii), there exists an index set
Cc{ll|+2,...,[ il +d+ 1,3+ T2l +2,..., [ J1] + [Jo| +d+ 1}

collecting d or fewer linearly independent constraints s.t. [)n,‘ J1|+1 18 a positive linear combina-
tion of the rows of D%. (Note that C' cannot contain |J;| + 1 or |J;| + |Jo| + 1.) One can then

write

P ({A €pA,: DyA<c—1Z5 5 € J*} £ @) (279)

<P (aA i DA <e—1Z 5,5 € CULI|+ [Ts] + 1})

<pP? <sup {ﬁn,lelA : DnJ’A <c-— Zz’j,j S é}
A
> inf {Dn,mllHA D a1 A S € ZZ,J1|+J2|+1}) (280)
o ~ A A~~~ AN\ L =
—ps (melﬂpgf (DSD§’> <c1g_ Zflvc) > ¢+ Z;,lelMH) (281)

Here, the reasoning from (279) to (280) holds because we evaluate the probability of increas-
ingly larger events; in particular, if the event in (280) fails, then the constraint sets corre-
sponding to the sup and inf can be separated by a hyperplane with gradient lA)n’|Jl|+1 and so
cannot intersect. The last step solves the optimization problems in closed form, using (for
the sup) that a KarushKuhn-Tucker condition again holds by construction and (for the inf)
that f)n,\ﬂll-klbl-ﬁ-l = _bn,|J1|+1' Expression (281) resembles (277), and the argument can be

concluded in analogy to Case (ii). O

Lemma 20. Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11 hold. Sup-
pose that both 7 ; and w1 j+r, are finite. Let (P, Bn) be the sequence satisfying the conditions
of Lemma 15. Then for any 3, € (Bn + p//nA) N B,

1. U?Dn,j (/6:1) /0']23”7[]‘] (/87,1) — 1 for j € Jo.

S Pl i
2, —=Pnall 5 1 for j e J,.
2P, 2 Pp,lj)

3. | (BL) + Ly (BL)] 750, and

4. |Dp, 1 (Br) + Dp, 5 (B)]| = 0.

Proof. By Lemma 23, for each j,lim, . &

Zy,; (By) + Y i1 (Bn) B0 for almost all {Xi}2,.

—1VnEp, [m;(Xi;8,¢p,)]
n opp,i (Bh)

tion that 7y j, 71 [;] are finite is inherited by the limit of the corresponding sequences

= 71,4, and hence the condi-
VnEp, [m;(Xs;8y 9P, )]

knop, ;(B)
E ] Xz7 7/1’ n
and VnEp, [m(j( 5/ ®P, )]'
knop,,j1(Bh)

(1) m; being finite implies that Ep,m; (X;; B, »p,) — 0. Thus by Assumption 11,
Ep, (tj (X, B])) = 0. We then have, using Assumption 11 again,

Var (t; (Xi, 5,)) = / t; (a,8,)° dPu(x) — Ep, [t; (Xi, )]
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<M / t; (2. B) dPo(x) — Ep, [t; (X0, 8.)] = 0. (282)
Hence,

Qp,.5) (Br p.) = p i (Bos 0P,
=varp, (t; (Xi; Br. op,)) +2covp, (m; (Xi Buwp,) o tj (Xii Bu wp,))

<varp, (t; (Xi,8,)) + 2 (varp, (t; (Xi,ﬁé)))m (varp, (m; (Xs; 5, SOPn)))l/2

—0, (283)

And similarly

Qpn:[ﬂ#’ (67/17 (an) - QPnJ»‘P (61/17 (an) = cov (tj (Xi;/B;w @Pn) 7m90(Xi))

< y/varp, (t; (X;,B},)) varp, (my(X;)) — 0.

Lastly, we show that
vapE [mj (szﬁqleOPn)] + VL,DE [m[j] (XMB?/-L?SOPn)] = _VQDE [tj(Xi;B;mSOPn)] — 0.

Let
an = Vo E [tj(Xi; B, ¢p,)]

2
Kn

L and then

and by contradiction, assume that ¢, — ¢ # 0. Let r,, = ﬁ

Ep, [t; (Xi; By, P, +7n)] =Ep, [t; (Xi; B ¢p,)] + VoEp, [t; (Xi; By, ¢p,)] ™
+ (V@EPH [tj (Xi;ﬁ;w@)] -V ,Ep, [tj (Xi;ﬁq/mSOPn)D Tn

~0() ~ ol 2 + 0 (22

Therefore, we will have
Ep, [t; (Xi; B op, +10)] <0

for n large enough, which contradicts Assumption 11 that t; (X;; 8., ¢p, +7n) > 0.
Then by

Qp,; (Br) Qb (B7)
QP (Bn) Qg (B7)

op,; (Bn) = [ 1V E[m;(Xi; By, ep,)] } ] [ 1 VyE[m;(Xi; B, ¢p,)] }/7

we have

03,5 (Busopn) 198, jir, (Brswr,) = 1.
(2) Note that
ShojjtR Gp,.i (B> 0P )P, (B 0P )G, iR,

\/Epn’jzpn’J+Rl \/GPnJ (ﬂ’ll’lﬂ (pP’n)QP’FL (5’;17 “PPn)G/F)ny] \/GPNJ"FRl (67,17 (pP7L>QP7L (/641,7 SOPn)G/Pn7]+R1

— -1,
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where the result follows from (282) and (283).
(3) Note that, for j € Js,

vaj (/87/17 SOPn) + Zn,[]] (/87/17 SOPn)
_GiGu(Bhor) o) CuiGalBrier) | (G~ Gi)Gu(Bhor) (G = Gu)CalBrsor,)

op,.j(B) op,j)(Br)  op,i(Bh) op,,j(Bh) op, i (BL)
=op(1)

By Lemma H.15 in Kaido et al. (2019), {G%} converges in law to the same limit as {G,} for
almost all sample paths {X;};°,. This then implies the second half of Claim 3.
(4) This is similar to (2). O

Lemma 21. Assumptions 7, 8, 6, 10 hold. And suppose Assumption 9 or 11 hold. Then,

1. for each j=1,...,J1 + Jo, 4, u,

inf P sup  |7n;,8(A) =0 .
pep <(ﬁ,A)eBxA ’

2. Let (P, 3,) be a sequence such that P, € P,f3, € B for all n, and k' \/ny1.p, j (Bn) —
m; € R_o. Then, for any n >0, there exists N € N such that

>77><17

Proof. (1) First, for any € > 0 and for any j = 1,..., J; + Ja, by Assumption 10, 12, Lemma
D.2.2 in Bugni et al. (2015) and the argument in Lemma H.10(i) in KMS19 , there is n; such
that

P, | max | —*—+ —1
" (jeJ* &) (Bn)

for alln > N.

sup P ( sup  sup HQ(B,Q@) — Qp(ﬂ,gp)” < e) — 0.
pPeP m2>n1 (8,p)eBx &

Next, note that by Assumption 10,

sup P (sup o —ep| < 6) — 0.
PeP

m>n

Therefore, we have

sup P (sup sup HQ(B) - Qp(ﬁ)” > 6)

pPcp m>n geB

N R R € R €
< sup P (sup sup 8, 4) - (8, 9)|| > 2) + sup P (sup sup 20 (8, ¢) = 2p (8, 0p)]| > 2)
PeP m>n gef3 PeP m>n BEB

gsupP<Sup sup HQ(ﬁ’(‘O)_QP(ﬂ’@)H > ;) —i—supP(supMH@—SOPH > ;) — 0.
pPeP m2n (3,0)eBx & pep man
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Together with Assumption 2 that G(ﬁ) — Gp(pB) converges almost sure to 0, and Assumption
10.3, Assumption 7 that X p and Gp are bounded, we can get

inf P (sup sup HXA](B) — EP(B)H < e) — 1.

pep Mm2n (3,0)eBx &
And since
. opj(B)
ngB(A) = — =5~ —
’ Gng(B+5L)
A
_oralB+ JEer)  opi(Ber)
(}TLJ(/B + %7@) O-P,j(ﬁ + %WOP)
= 11,m,5,8(A)N2,n,5,8 (D) + Mg, (D) + N2n j,6(A)
where

op(B+ 22, ¢p)

Mn, ,B(A) = —~ O
! On,j (5 + %7 (,0)
op, (/Ba QDP)
M2n,j,8(A) = ! -

opj(B+ L op)

We can conclude that

inf P|sup sup |(n;8(A)—1<e] =1
PEP \m2n (s p)cBx o

Finally, note that for any € > 0,

1= lim mf P sup sup N A S €
n—oo PeP (mZn (18790)€E>< & ’nnvjvﬁ( )’ )

< inf lim P | ) { sup Iﬁn,j,a(A)\Sé}
m>n (ﬂ#’)egxgﬁ

= inf P | lim m { sup  [Mn,j,8(4A)] Se}
m>n (B,p)eBx

= inf P < sup  |7n,j,8(A)| <€, for all but finite n> ,
(B:p)EBX &

where the second equality is due to the continuity of probability with respect to monotone

sequences. Therefore, the first conclusion of the lemma follows.
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(2) I first give the limit of fi, ;. Recall the definitions of fi,, ;) and fi, ;:

mn,j (Bv@)
on J(B)
Un [4] (ﬂ) a’n,j(ﬂ)

1

fin,[;) (B) = min ¢ max | 0, 13

fin, (B) =1 — fin 5 (B) -

Note that
Sup —1 fmnj (/BTL’SO) K:_l \/EEP'IL [m] (Xlﬂﬁ’;w()ppn)]
srcmemvinl " ng (Oh) " op,.; (B,)
Gn (B, ) f A V,Ep, [m; (Xy; B, 0)]vn (¢ —¢)
< NP T/ A o n ns
8 EBSEB\FA FonGn.j (8) + ’Yl ,P,j (5@1) Mn.g,6, t KO j (3)
=op(1),

where the last equality follows from sups 5 |Gn(8,,¢)| = Op(1) due to asymptotic tightness
of {G,} (uniformly in P ) by Lemma D.1 in Bugnl et al. (2015), Theorem 3.6.1 and Lemma
1.3.8 in Van Der Vaart and Wellner (1996), and supgcg [f)n,5,5(A)| = op(1) by part (i) of this

Lemma. Hence,
z 2 i M.
Hn,j (Bn) = 1 —min {max <O, > ’1} :
Ty + T

unless my jj + m1,; = 0 (this case is considered later). This implies that if m ; € (—o0,0] and
Tq,[;] = —00, one has

ﬂnyj (/Bn) & 1

Now, one may write

op.j (Bn) | _OPui (Bn) ((%,j (Bn) 1) 4 <0ij(/8”) _ 1> (284)

5-7]:/,[] (ﬁn) &naj (ﬁn) OA}% (ﬁn) a'n,j (ﬂn)
—0O» (1 n,j (Bn, P) _1 1
Pn( ) (67]1\{7 (/87“@) +0p( )7

where the second equality follows from the first conclusion of the lemma. Hence, for the second
conclusion of the lemma, it suffices to show &, ; (3,) / 6% (Bn) — 1 = 0p(1). For this, consider
two cases.

Case 1. j € (JoU[Jo]) NJ* and [j] ¢ J*. Then, 7} ; = 0 and 5 ;) = —oc0 and

6n,j (571) a'n,j (/Bn) - 5'7]:,4]' (/Bn)
oyt (Ba) Gh; (Bn)
_ (1 = fin,j (Bn)) OP, (6n.j (Bn))
(1+0p,(1)) 6m; (Bn) + (1 = fin,j (Bn)) O, (6n; (Bn))

(285)

= op(1),
where we used 6;; (Bn) = Op(1) by Assumption 9 or 11 and part (i) of the lemma. By (284)
and (285), op,.; (Bn) /3% (Bn) — 1 = 0p(1).

Case 2. j € J* and [j] € J*. Then, 7} ; = 0 and 7 ; = 0. In this case, fin; (8n) € [0,1] for
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all n and by Lemma 20 (1),

OP,.j (Bn) _
7@”7;] B 1’ = 0p(1), (286)
for j = Jo U [J2]. Therefore,
op,.j (Bn) 1= 0P, (Bn) — 6% (Bn)
55 (Bn) aat (Bn)
_ [/ALNJ (ﬁn) + (1 - /ln,j (Bn))] OP,,j (ﬂn) - [ﬂm]‘ (ﬂn) &n,j (ﬂn) + (1 - ﬂn,j (/Bn)) &n,[j] (ﬁn)]
55 (Bn)

_ ﬂmj (Bn) [UPn,j (Bn) - &n,j (Bn)] (1 - ﬂn,j (Bn)) [UPH,[J'] (/Bn) - &n,[j] (ﬂn) + OPn(l)] 987
) 52 (B) " o3 () - (287)

where the second equality follows from the definition of 6% (6n), and the third equality follows
from (286) and op, [;; bounded away from 0 due to Assumption 9 or 11. Note that

finj (Bn) (0P, (Bn) — On (Bn)] _ . . On,j
G (Bn) = finj (Bn) &M (Bn)

(Bn) <UPn,j (Bn)

ey 1) =on)

where the second equality follows from the first conclusion of the lemma. Similarly,

(1= fin, (Bn)) (0,15} (Bn) = Gn,1j) (Bn) + 0p, (1)]

53 (5n) (255)
_ . Gn) (Bn) (P, 5 (Bn) B
= (1 g (3 T (T 1 o) = o (1),
By (287)-(288), it follows that op, ; (8,) /6, (Bn) — 1 = op, (1). O

Lemma 22. Z,3(A) 4 7.

Lemma 23. Suppose Assumptions 7, 8, 6, 10 hold. In addition, suppose Assumption 9 or 11

hold. Given a sequence

{Qn, B} € {(P,B): PP, € B(P)}

such that imy, o0 Ky, '\/My1,0,.5 (Bn) ezists for each j = 0,1,...J, let x; ({Qn, Bn}) be a function
of the sequence {Qn, Bn} defined as

e 1 ‘ _
Xj ({Qna Bn}) = {O’ Zf hmn‘)w Kn \/ﬁ’yl,Qn,j (Bn) 0 (289)

—00, if limy o0 Ky '/ NY1,Q 5 (Bn) <0

Then for any B, € By, + ﬁ[—l, 1]¢ for all n, one has:

1. Ky ' my1,Qug (Bn) = Kn 'V Q.5 (Br) = o(1);
2. x({@n:Bn}) = x {@n, B}) = Trij;

g Ymn;(By@) _ VB, [my(XiBheon)] _ op(1).

Rn&n,]’(ﬁ»’n) Hna'Pn,j(B'/n)
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Proof. For (i), the mean value theorem yields

“p w0 VEp [my(X; 8,0p)]  VNEP [mj(XS&SOP)}
PEP BeB(P),Bep+b A knop;(B) HnUP,j(B)
Vit (B my(X: 8, 0p)] = Ep [m;(X:8,0p)] )
< sup sup :
PEP peB(P) fef+ LA knop;(B3)
3 Vn <0P,j(ﬁ) - UP,j(B))
+ sup sup E [mj(X 0, sop)} =
PEP BeB(P) Bep+ L A tknopj(B)op;(pB)
|DesB)| v |- 8 e Rl
< sup sup -+ sup sup =
PEP peB(P) Beptf5 A fin PEP geB(P).fept LA Fnopj(B)or;(B)

=o(1),

where (3 represents a mean value that lies componentwise between 3 and B and where we used
the fact that suppcp supgeppy [|[Dp;(B)] < M, \/EHB — 5H < pand op;(B) € [, 1]. And it
is easy to show this for v using Chain rule and similar arguments.

Result (ii) then follows immediately from (289).

For (iii), note that by (156), we have

s (3) Vi [ (%500,

~ sup K, — — Ky, .
ﬁeﬁn+P/\/ﬁA a'n,] (ﬁ) OQn,j <’8)
nY1,P,.j (Bn) .
< sup M%jﬁn(ﬁ)

BeBn+p/ VA Fin

Zn' nsJ _n D i _n A
TN

:OP(l)v

where the last equality follows from supgeg|Zy g| = Op(1) due to asymptotic tightness of {Z, }
(uniformly in P ) by Lemma D.1 in Bugni et al. (2015), Theorem 3.6.1 and Lemma 1.3.8 in
Van Der Vaart and Wellner (1996), and supgeg |1n,;(8)| = op(1) by Lemma 21(i). O
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