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Abstract

A union bound is a union of multiple bounds. Union bounds occur in a

wide variety of empirical settings, such as difference-in-differences, regres-

sion discontinuity design, bunching, and misspecification analysis. In this

paper, I propose a confidence interval for these kinds of bounds based on

modified conditional inference. I show that it improves upon existing meth-

ods in a large set of data generating processes. The new procedure gives

statistically significant results while the pre-existing alternatives do not in

the empirical applications in Dustmann, Lindner, Schönberg, Umkehrer,

and Vom Berge (2022). I implement the proposed method in the compan-

ion R package UnionBounds for easy use in practice.
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1 Introduction

This paper studies inference for a target object partially identified by the union

of a set of bounds, namely, a union bound, and provides new procedures that

significantly improve upon the existing alternatives. Union bounds commonly arise

in empirical work, for example, in the assessment of the importance of the parallel

trends assumption in difference-in-differences (DiD) analyses. Recent papers such

as Manski and Pepper (2018) and Rambachan and Roth (2023) (RR23) study the

relaxation of the classical parallel trends assumption within a DiD framework. One

of their approaches is to assume that the violation of parallel trends in a post-policy

period is bounded above by the maximum violation in the pre-policy periods. In

this case, the identified set for the average treatment effect on the treated can be

characterized as a union bound, where each bound is formed by the DiD estimand

adding and subtracting the violation of a pre-policy year, and the set is all pre-

policy periods. I also discuss applications to regression discontinuity designs,

bunching strategies to identify the elasticity of taxable income, and misspecified

models in Section 2.

In this paper, I provide a general framework for inference on union bounds.

The main difficulty for inference is that the endpoints of a union bound are non-

smooth functions of each single bound. Hirano and Porter (2012) show that there

is no local asymptotic quantile unbiased estimator. Moreover, Fang and Santos

(2019) show that an empirical bootstrap procedure, in the terminology of Horowitz

(2019), is not uniformly valid. Similar difficulties appear in inference for moment

inequalities and directionally differentiable functions, but the existing methods

do not apply to union bounds because of the different restrictions on the null

parameter space. So far there are two uniformly valid methods. The first one is

a simple confidence interval (CI), which is the union of CIs for each bound. This

method can be overly conservative, especially when the bounds are close to each

other. The second one is the adjusted bootstrap procedure proposed in Ye, Keele,

Hasegawa, and Small (2023) (YKHS23). This method involves a subsample so

the CI converges to the identified set at a rate slower than
√
n, resulting in trivial

power for
√
n local alternatives. RR23 propose an inference procedure for their

sensitivity analysis in DiD. However, the procedure relies on the specific structure

of DiD and does not apply to general union bound settings.

In Section 3, I propose a modified conditional CI. Loosely speaking, I construct
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a conditional critical value exploiting the distribution of the maximum estimated

upper bound (resp. the minimum estimated lower bound) conditional on the second

largest estimated upper bound (resp. the second smallest estimated lower bound).

In this way, the conditional critical value is data-adaptive and sensitive to the

binding bounds, which leads to a shorter CI when the bounds are relatively close

to each other. However, the conditional critical value is not uniformly valid,

and for that reason, I propose a novel modification that truncates the conditional

critical value from below to guarantee uniform coverage. The modified conditional

CI converges to the identified set at a rate of
√
n, and thus has material power

improvement upon YKHS23. I also show that under a large set of data generating

processes (DGPs), the modified conditional CI is shorter than the simple CI with

probability approaching one. I provide the UnionBounds R package to implement

my method.1

In Section 4, I conduct simulations based on the DiD settings in RR23 and

compare the performance of my modified conditional CI to the simple CI, the

adjusted bootstrap in YKHS23 and the hybrid CI in RR23. The length of the

median modified conditional CI is the smallest in most simulation designs and is

close to being the smallest in all designs.2 In terms of the length of the median CI,

net of median point estimates of the bound, the modified conditional CI results

in a decrease of up to 43% relative to alternative methods.

In Section 5, I illustrate the proposed inference procedures in an application

using RR23’s sensitivity analysis in Dustmann et al. (2022). Specifically, Dust-

mann et al. (2022) study the effects of the minimum wage introduced in Germany

in 2015. The authors are interested in whether the employment effect is greater

than the negative wage effect, which leads to an elasticity smaller than one. The

authors conduct the analysis using DiD and relax the parallel trends assumption

following RR23. Under all levels of relaxation, the modified conditional CI is

shorter than the simple CI and the one provided by RR23. Under the bench-

mark relaxation, my 95% CI suggests that the elasticity is smaller than one, while

the 95% RR23 CI and a simple 95% CI do not. My method gives a breakdown

relaxation 33% to 66% larger than the RR23 and the simple CI respectively.

1The latest version of the R package is available at https://github.com/xinyuebei-
econ/UnionBounds

2The median CI is the median of the endpoints of the 1− α CI across simulated samples.
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Related Literature

Although there are many empirical examples where the identified set is a union

bound, only a small number of inference approaches have been developed, which

I discuss next.

First, a common practice is a simple CI constructed based on the intersection

union principle discussed in Casella and Berger (2021) (ch. 8.2.3), see Conley,

Hansen, and Rossi (2012), Kolesár and Rothe (2018), Hasegawa, Webster, and

Small (2019), and Ban and Kedagni (2022), among others. The idea is to first

construct a CI for each bound and then take a union over the set, which is intuitive

and has uniformly valid coverage.3 However, taking union over the confidence

intervals inflates the coverage rate, and the simple CI can be overly conservative.

I prove that the simple CI is wider and has lower local power than my proposal

under a large set of DGPs.

Second, YKHS23 study the relaxation of the parallel trends assumption in

DiD based on a negative correlation bracketing strategy. The resulting identified

set for the average treatment effect on the treated is a union bound. To address

inference, they introduce two bootstrap methods. The first one is an empirical

bootstrap procedure, in the terminology of Horowitz (2019). This method is not

uniformly valid and may overreject when the bounds are close to each other. The

second procedure introduces an adjustment term based on a subsample so that

it has uniform asymptotic coverage, but at the cost that the CI converges to the

identified set at a rate slower than
√
n. This causes material power loss for a large

set of local alternatives relative to my CI.

Third, RR23 propose an inference procedure under the specific structure of

relaxation of the parallel trends assumption in DiD. The main idea is to partition

the parameter space so that each element in the partition can be represented by

a set of moment inequalities. RR23 first construct the CI for each element in the

partition based on Andrews, Roth, and Pakes (2023). They then take a union over

different elements in the partition to get a valid CI for the union bound. While

3The simple method relates to the statistical literature on testing whether the minimum
of several elements is no greater than zero, which can be framed as a one-sided union bound
problem. Cohen, Gatsonis, and Marden (1983) show that the one-sided version of the simple test
is uniformly most powerful among all monotone level α tests. Berger (1989) proposes a method
that strictly improves the power of the simple one, but inverting this test yields a disconnected
CI, whose convex hull coincides with that of the simple CI. Additionally, the rejection region is
difficult to interpret, see e.g. Perlman and Wu (1999).
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the CI for each element is efficient, the efficiency may not hold after taking the

union. In both the simulation and the empirical application, my CI outperforms

their CI when the bounds are not well separated. Moreover, their method uses the

specific DiD structure and does not apply to general finite union bounds.

The procedure constructed in this paper also contributes to other related lit-

erature, such as intersection bounds, directional differentiable functions, and con-

ditional inference.

The union bound inference complements the large literature on intersection

bounds and moment inequality models. Chernozhukov, Lee, and Rosen (2013)

investigate inference on intersection bounds, where the target object is in the in-

tersection of a set of bounds. A leading case of intersection bounds is inference

on a parameter bounded by moment inequalities. See Chernozhukov, Hong, and

Tamer (2007), Romano and Shaikh (2008), Rosen (2008), Andrews and Guggen-

berger (2009), Andrews and Soares (2010), Andrews and Shi (2013), and Bugni,

Canay, and Shi (2015), among others, for different procedures. Inference for in-

tersection bounds and union bounds share some similar challenges, but also differ

in important ways: The differences between the target object and the bounds,

scaled by
√
n, is an important element for inference, but can not be consistently

estimated. With intersection bounds, the signs of the differences are known, e.g.

the target object is larger than all lower bounds, while with union bounds, the sign

is unclear, e.g. the target object is larger than at least one lower bound. Thus the

problem of inference on union bounds is different from intersection bounds and

requires a different treatment.

My method also sheds light on inference on directionally differentiable func-

tions. A union bound can be written as the minimum of a set of lower bounds

to the maximum of a set of upper bounds. The min and max operators are di-

rectionally differentiable. Fang (2018) and Ponomarev (2022) study the efficient

estimation of partially differentiable functionals, but they do not consider infer-

ence. Fang and Santos (2019) propose a novel bootstrap procedure for directionally

differentiable functions. However, their inference procedure requires that the null

parameter space is convex, which does not hold for union bounds.4 This paper

studies a specific non-convex null space, but the modified conditional procedure

is potentially applicable to more general settings.

My paper widens the use of the conditional inference technique. There is

4Specifically, the space of λℓ and λu under (7) is not convex.
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a growing literature on conditional inference, see, e.g. Moreira (2003), Kleiber-

gen (2005), Andrews and Mikusheva (2016), Andrews, Kitagawa, and McCloskey

(2024), Andrews, Kitagawa, and McCloskey (2021), Andrews et al. (2023), and

RR23, among others. I use their insights by constructing a conditional CI that has

proper coverage under a subset of DGPs, and then modifying it with a lower trun-

cation to guarantee uniform coverage. The modification is a novel contribution

that is not used in current applications of conditional inference.

2 Setup and Examples

2.1 Setup

The goal of this paper is to construct a uniformly valid confidence interval for the

target object θ, whose identified set is characterized as a union bound

θ ∈
[
inf
b∈B

λℓ,b, sup
b∈B

λu,b

]
. (1)

In this paper, λℓ and λu are consistently estimable with an asymptotically normal

estimator. B is a known finite set. Below I illustrate this setting in different

examples.

2.2 Examples

Example 1. (Difference in Differences). RR23 study a more credible ap-

proach to the parallel trends assumption in DiD. To illustrate, consider a panel

data model t = −T , ..., 1. Let γ ∈ RT+1 be a vector of “event study” coefficients,

which can be decomposed as

γ =

(
γpre

γpost

)
=

(
ξpre

θ + ξpost

)
.

The target object θ is the average treatment effect on the treated, and ξ is a bias

from a difference in trend. Here θ and ξpost are scalar, ξpre =
(
ξpre−T , ..., ξ

pre
−1

)
and

γ0 = ξpre0 is normalized to zero. Under parallel trends, (ξpre, ξpost) = 0 and thus θ

is point identified. However, this is a strong assumption that may not hold exactly.

One type of relaxation is to assume that the violation of parallel trends at time
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t = 1 is bounded above by the maximum pre-policy trend difference

∣∣ξpost − 0
∣∣ ≤M max

t=−1,...,−T

∣∣ξpret+1 − ξpret

∣∣ , (2)

where M ≥ 0 is the degree of relaxation specified by the researcher. Manski and

Pepper (2018) implement a similar concept with a natural benchmark M = 1 (see

their Table 3). Under (2), the identified set of θ is a union bound in (1) with

B = {1, ..., 2T},

λℓ,b = λu,b =

γpost +M
(
γpre−b+1 − γpre−b

)
if b = 1, ..., T ,

γpost −M
(
γpreT−b+1 − γpreT−b

)
if b = T + 1, ..., 2T .

(3)

Hasegawa et al. (2019), YKHS23, and Ban and Kedagni (2022) study different

types of relaxations of the parallel trends assumption where the identified set is

also characterized by union bounds.

Example 2. (Bunching and Taxable Income Elasticity). Blomquist, Newey,

Kumar, and Liang (2021) study the identification of the taxable income elasticity

with bunching information. Assume that the after-tax income has two linear

segments with slopes ρ1 > ρ2 and a kink at K, as illustrated in the left panel of

Figure 1. Assume that the preference is specified as in Saez (2010) by the isoelastic

utility function:

U (c, y, ξ) = c− ξ

1 + 1/θ
(y/ξ)1+1/θ, ξ > 0, θ > 0,

where y is the before-tax income with density f(y), c = y − T (y) is the after-tax

income, θ is the income elasticity and ξ represents the unobservable heterogeneity

which is continuously distributed with density g(ξ). Blomquist et al. (2021) show

that without the restriction on g(ξ), θ is not identified, but we can learn about

θ with smoothness restrictions on g(ξ). Consider a bunching interval [y1, y2] con-

taining the kink K, as in Figure 1 right panel. Let ξ1 = ρ−θ
1 y1 and ξ2 = ρ−θ

2 y2

denote lower and upper end points for ξ that correspond to y1 and y2, respectively.

Under the assumption that

σℓ min {g (ξ1) , g (ξ2)} ≤ g(ξ) ≤ σumax {g (ξ1) , g (ξ2)} for ξ ∈ [ξ1, ξ2] (4)
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Figure 1: Left: Budget Constraint and Utility. Right: Bunching Interval.

for some σu ≥ 1 ≥ σℓ > 0, the identified set of θ is characterized by

θ ∈
[
min
b∈B

λℓ,b, max
b∈B

λu,b

]
∩ R+

where B = {1, 2},

λℓ,1 =
log
(

y1
y2

+ P (y1≤Y≤y2)
f−(y1)σuy2

)
log ρ1 − log ρ2

, λℓ,2 =
− log

(
y2
y1

− P (y1≤Y≤y2)
f+(y2)σuy1

)
log ρ1 − log ρ2

,

λu,1 =
log
(

y1
y2

+ P (y1≤Y≤y2)
f−(y1)σℓy2

)
log ρ1 − log ρ2

, λu,2 =
− log

(
y2
y1

− P (y1≤Y≤y2)
f+(y2)σℓy1

)
log ρ1 − log ρ2

,

and f−(y1) = limy↑y1 f(y), f+ = limy↓y2 f(y).
5 The identified set of θ is restricted

by R+, but if we have a valid CI for θ̃ satisfying (1), the intersection of θ̃’s CI and

R+ is a valid CI for θ. Thus it suffices to consider inference for union bounds.

Blomquist et al. (2021) focus on identification and put aside inference.

Example 3. (Regression Discontinuity Design). Kolesár and Rothe (2018)

study inference in regression discontinuity designs with a discrete running variable.

Let D = 1 [X ≥ 0] be a treatment indicator. Let Y (1) and Y (0) denote the

potential outcome with and without the treatment, and Y = DY (1)+(1−D)Y (0)

denote the observed outcome. Let µ(X) = E [Y | X]. The average treatment effect

5This is derived from Blomquist et al. (2021) equation (8), and I assume for simplicity that
the terms in the log are strictly positive.
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at the threshold is

θ = E [Y (1)− Y (0) |X = 0] = lim
x↓0

µ(x)− lim
x↑0

µ(x).

A standard approach to estimate θ is to run a local OLS regression of Y on

polynomial m(X) with X ∈ [−h, h] where

m(x) = (1 [x ≥ 0] ,1 [x ≥ 0]x, . . . ,1 [x ≥ 0]xp, 1, x, . . . , xp)′ .

Let γh be the regression coefficient and θh = (1, 0, ..., 0)γh. If X is continuous, the

bias ξ(x) = µ(x) −m(x)′γh is negligible if we choose h → 0 at a sufficiently fast

rate as the sample size increases. However, if X is discrete, this “undersmoothing”

procedure is not feasible. Kolesár and Rothe (2018) propose an honest CI under

restrictions that the bias at the threshold are bounded above by the specification

errors at other support points, i.e.∣∣∣∣limx↑0 ξ(x)
∣∣∣∣ ≤ max

x̃∈S−
X

|ξ(x̃)| ,
∣∣∣∣limx↓0 ξ(x)

∣∣∣∣ ≤ max
x̃∈S+

X

|ξ(x̃)| ,

where S−
X = SX ∩ [−h, 0), S+

X = SX ∩ [0, h] and SX is the support of X. Under

this restriction, the identified set of θ is characterized by (1) with

B =
{
(sℓ, su, xℓ, xu) : sℓ, su ∈ {−1, 1}, xℓ ∈ S−

X , xu ∈ S+
X

}
,

λℓ(sℓ, su, xℓ, xu) = λu(sℓ, su, xℓ, xu) = θh + sℓξ(xℓ) + suξ(xu).

Kolesár and Rothe (2018) use the simple CI based on union principle for inference.

Example 4. (Misspecification Analysis). Masten and Poirier (2021) provide a

constructive way for researchers to salvage a falsified instrumental variable model.

Consider the classical linear model with multiple instruments:

Y = Xθ + Z ′γ + U,

where Y is the outcome, X is a scalar endogenous variable and Z is a L×1 vector of

potentially invalid instruments. Under (i) exogeneity cov(Z,U) = 0, (ii) exclusion

γ = 0 and (iii) a proper rank condition, we can point identify θ. However, if either
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the exogeneity or exclusion restriction does not hold, the model may be falsified.

In this context, Masten and Poirier (2021) suggest relaxing the model by

Θ(ξ) =
{
θ ∈ R : −ξ1L×1 ≤ var(Z)−1 (cov(Z, Y )− cov(Z,X)θ) ≤ ξ1L×1

}
,

where ξ ≥ 0 measures the level of relaxation and the inequalities hold element

wise. The authors suggest reporting the falsification adaptive set Θ(ξ), where

ξ is the minimum relaxation such that Θ(ξ) is non-empty. In addition, Θ(ξ) is

characterized by (1), with

λℓ,b = λu,b = ψb/πb,

ψb and πb are the b-th element of ψ = var(Z)−1cov(Z, Y ), π = var(Z)−1cov(Z,X),

and B = {b = 1, ..., L : πb ̸= 0} . In their empirical application, the authors implic-

itly assume that either πb = 0 or |πb| ≥ ε > 0 for all b, so that B is consistently

estimable, in the sense that the Hausdorff distance between B̂ and B converges

to zero in probability. Therefore, asymptotically we can treat B as known. Apfel

and Windmeijer (2022) propose a generalized falsification adaptive set, which also

has a union bound characterization. Both papers do not consider inference.

Stoye (2020) studies inference for interval identified parameters under misspec-

ification. The identified set for θ is [θL, θU ], and this set is empty when θL > θU .

Stoye (2020) suggests reporting the misspecification robust identified set

[θL, θU ] ∪
{
σUθL + σLθU
σL + σU

}
, (5)

where σL and σU are the asymptotic standard deviations for estimators θ̂L and

θ̂U . In this case, the identified set is a union bound in (1) with B = {1, 2},

λℓ,1 = θL, λu,1 = θU , λℓ,2 = λu,2 =
σUθL + σLθU
σL + σU

.

Stoye (2020) proposes a CI for (5), but it does not apply to general union bounds.
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3 Inference Procedure

In this section, I study inference on θ in (1). I illustrate with a normally distributed

estimator λ̂n =
(
λ̂ℓ, λ̂u

)
such that

(
λ̂ℓ

λ̂u

)
∼ N

((
λℓ

λu

)
,Σn

)
, Σn =

[
Σℓ,n Σ′

ℓu,n

Σℓu,n Σu,n

]
(6)

with Σn known, where Σℓ,n, Σu,n and Σℓu,n are |B| × |B| matrices. The true value

λ = (λℓ, λu) ∈ Λ and Λ can be a lower dimensional subspace of R2|B|, e.g. as

in Example 1. In general, the normality holds asymptotically with appropriate

scaling, and the asymptotic variance can be consistently estimated.

I construct a modified conditional CI by inverting the test of the null hypothesis

H0 : min
b∈B

λℓ,b ≤ θ ≤ max
b∈B

λu,b. (7)

The test takes the form

ϕ
(
θ, λ̂n,Σn

)
= 1

[
T̂ (θ) > ĉm(θ;α)

]
,

where T̂ (θ) is the test statistic, and θ is rejected if T̂ (θ) exceeds the modified

conditional critical value ĉm(θ;α). Consequently, the corresponding 1− α CI is

CIm(λ̂n,Σn;α) =

[
inf

ϕ(θ,λ̂n,Σn)=0
θ, sup

ϕ(θ,λ̂n,Σn)=0

θ

]
. (8)

3.1 The Test Statistic

The test statistic has a max-min form

T̂ (θ) = max

{
min
b∈B

Zℓ,b, min
b∈B

Zu,b

}
(9)

where σℓ,b =
√

Σℓ,bb, σu,b =
√

Σu,bb,

Zℓ,b =
λ̂ℓ,b − θ

σℓ,b
, and Zu,b =

θ − λ̂u,b
σu,b

. (10)
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Observing that H0 in (7) is equivalent to

H0 : max

{
min
b∈B

(λℓ,b − θ), min
b∈B

(θ − λu,b)

}
≤ 0, (11)

and the test statistic is constructed by replacing λℓ and λu in (11) by their es-

timator, adjusted for the standard deviation. Put another way, the population

version of T̂ (θ), which replaces (λ̂ℓ, λ̂u) with (λℓ, λu), is non-positive if and only if

H0 holds.

If we use a simple critical value csim = Φ−1(1 − α
2
), then we will get a simple

CI

CIsim =

[
min
b∈B

λ̂ℓ,b − σℓ,bΦ
−1(1− α

2
), max

b∈B
λ̂u,b + σu,bΦ

−1(1− α

2
)

]
, (12)

which is often used in current practice, see e.g. Kolesár and Rothe (2018),

Hasegawa et al. (2019), Ban and Kedagni (2022). The simple CI is uniformly

valid under mild conditions, see Proposition 2 in Kolesár and Rothe (2018). How-

ever, in general, it can be very conservative. To illustrate, define

bℓ = argmin
b∈B

λℓ,b, bu = argmax
b∈B

λu,b. (13)

and observe that

P
(
θ ̸∈ CIsim

)
= P

(
max

{
min
b∈B

Zℓ,b, min
b∈B

Zu,b

}
> Φ−1(1− α

2
)

)
≤ P

(
max {Zℓ,bℓ , Zu,bu} > Φ−1(1− α

2
)
)

≤ P
(
Zℓ,bℓ > Φ−1(1− α

2
)
)
+ P

(
Zu,bu > Φ−1(1− α

2
)
)

(14)

= P

(
λ̂ℓ,bℓ − λℓ,bℓ

σℓ,b
+
λℓ,bℓ − θ

σℓ,b
> Φ−1(1− α

2
)

)
(15)

+ P

(
λu,bu − λ̂u,bu

σu,b
+
θ − λu,bu
σu,b

> Φ−1(1− α

2
)

)
(16)

≤ α

2
+
α

2
= α.

Here the first inequality holds because I replace the minimum of Zℓ and Zu by

the value at bℓ and bu, which may not be the realized minimizers. The second
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inequality follows from P (A ∪B) ≤ P (A) + P (B). The final inequality holds

under the null hypothesis (7).

The potential conservativeness comes mainly from the first and last inequal-

ities. The first inequality tends to be conservative when the minimum λℓ,bℓ is

close to other elements in λℓ. In such cases, we should consider the minimum of

the vector Zℓ instead of merely Zℓ,bℓ . The same reasoning applies to the upper

bound. The last inequality becomes conservative if the union bound is wide, i.e.

λu,bu − λℓ,bℓ ≫ max {σu,bu , σℓ,bℓ}. In such cases, either (15) or (16) is negligible,

allowing us to replace Φ−1(1 − α
2
) with Φ−1(1 − α). This scenario is also studied

in Imbens and Manski (2004) and Stoye (2009) for a single bound where |B| = 1.

Besides the first and last inequalities, the simple CI is also conservative because

(14) does not fully use the joint distribution of (Zℓ,bℓ ,Zu,bu).

That said, the simple critical value is near optimal in less favorable cases,

where both the minimum and maximum are well separated, and the length of the

identified set is short, i.e.

min
b∈B\bℓ

λℓ,b − λℓ,bℓ
σℓ,b

≫ 0, min
b∈B\bu

λu,bu − λu,b
σu,b

≫ 0,
λu,bu − λℓ,bℓ

min {σℓ,bℓ , σu,bu}
≈ 0. (17)

In such scenarios, the first and last inequalities are close to equality, mitigating

any significant power loss. This implies that csim is nearly optimal among constant

critical values because it protects against the less favorable distributions, although

at the cost of an inflated coverage rate against more favorable DGPs. Therefore,

it is crucial to devise a data-dependent critical value that ensures proper coverage

under case (17) but is more efficient under other DGPs.

3.2 Conditional Critical Value

Following from the previous discussion, I now construct a data dependent critical

value that is valid under less favorable DGPs and more efficient otherwise. To do

so, note that under less favorable DGPs in (17),

P (Eℓ ∪ Eu) ≈ 1 (18)
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where6

Eℓ =
{
T̂ (θ) = Zℓ,b̂ℓ

}
∩
{
λℓ,b̂ℓ ≤ θ

}
, (19)

Eu =
{
T̂ (θ) = Zu,b̂u

}
∩
{
λu,b̂u ≥ θ

}
,

b̂ℓ = argmin
b∈B

Zℓ,b, b̂u = argmin
b∈B

Zu,b.

If the critical value ĉ(θ) satisfies

P
(
T̂ (θ) > ĉ(θ) |Eℓ ∪ Eu

)
≤ αc < α, (20)

the unconditional rejection rate is bounded above by α following from (18). There-

fore, I construct a conditional critical value based on the conditional distribution

T̂ (θ)
∣∣∣T̂ (θ) = Zℓ,b1 and T̂ (θ)

∣∣∣T̂ (θ) = Zu,b2

for b1, b2 satisfying λℓ,b1 ≤ θ ≤ λu,b2 .

Lemma 1. Under H0, assume that (6) holds and

P
(
Zℓ,b̂ℓ

= Zu,b̂u

)
= 0. (21)

Let b1, b2 satisfy λℓ,b1 ≤ θ ≤ λu,b2 , then

Φ
(
T̂ (θ)

)
− Φ (tℓ,1(θ, b1))

Φ (tℓ,2(θ, b1))− Φ (tℓ,1(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

} FOSD

⪯ Unif(0, 1) (22)

Φ
(
T̂ (θ)

)
− Φ (tu,1(θ, b1))

Φ (tu,2(θ, b1))− Φ (tu,1(θ, b1))

∣∣∣{T̂ (θ) = Zu,b2

} FOSD

⪯ Unif(0, 1)

where

tℓ,1(θ, b) =


min
b̃∈B

(
1 + ρℓu(b, b̃)

)−1 (
Zu,b̃ + ρℓu(b, b̃)Zℓ,b

)
, if min

b̃∈B
ρℓu(b, b̃) > −1

−∞ otherwise

6If the minimizer of Zℓ is not unique, define b̂ℓ as the smallest element of the minimizers,
with an analogous definition for b̂u.
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tu,1(θ, b) =


min
b̃∈B

(
1 + ρℓu(b̃, b)

)−1 (
Zℓ,b̃ + ρℓu(b̃, b)Zu,b

)
, if min

b̃∈B
ρℓu(b̃, b) > −1

−∞ otherwise

tℓ,2(θ, b) =


min

b̃∈B:ρℓ(b,b̃)<1

(
1− ρℓ(b, b̃)

)−1 (
Zℓ,b̃ − ρℓ(b, b̃)Zℓ,b

)
if min

b̃∈B
ρℓ(b, b̃) < 1

+∞ otherwise

tu,2(θ, b) =


min

b̃∈B:ρu(b̃,b)<1

(
1− ρu(b̃, b)

)−1 (
Zu,b̃ − ρu(b̃, b)Zu,b

)
if min

b̃∈B
ρu(b, b̃) < 1

+∞ otherwise

ρℓ(b1, b2) =
Σℓ,b1b2

σℓ,b1σℓ,b2
, ρu(b1, b2) =

Σu,b1b2

σu,b1σu,b2
, ρℓu(b1, b2) =

Σℓu,b1b2

σℓ,b1σu,b2
,

and Zℓ, Zu are defined in (10).

Loosely speaking, Lemma 1 implies that the distribution of T̂ (θ) conditional

on T̂ (θ) = Zℓ,b1 is first order stochastically dominated by a truncated normal

distribution T N (0, 1, [tℓ,1(θ, b1), tℓ,2(θ, b1)]), where T N (µ, σ2, [t1, t2]) is a normal

distribution N (µ, σ2) truncated at [t1, t2]. Hence, we can guarantee conditional

coverage by using the 1−αc quantile of T N (0, 1, [tℓ,1(θ, b), tℓ,2(θ, b)]) with α
c < α.

Condition (21) holds in most examples previously discussed and is assumed in

Proposition 1 for simplicity.

Define the conditional critical value ĉc(θ, αc) as:

ĉc(θ, αc) =

Φ−1
(
αcΦ

(
tℓ,1(θ, b̂ℓ)

)
+ (1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

))
if Zℓ,b̂ℓ

≥ Zu,b̂u

Φ−1
(
αcΦ

(
tu,1(θ, b̂u)

)
+ (1− αc)Φ

(
tu,2(θ, b̂u)

))
if Zℓ,b̂ℓ

< Zu,b̂u

(23)

where αc ∈ (1
2
α, α) is a user chosen tuning parameter, with a suggested rule of

thumb value 4
5
α. As we will see later, αc trades off the power under more and less

favorable DGPs.

Proposition 1. Under H0, (6) and (21), it holds that

P
(
T̂ (θ) > ĉc(θ, αc)

∣∣∣Eℓ ∪ Eu

)
≤ αc. (24)

Under (21), Eℓ∪Eu can be partitioned into {T̂ (θ) = Zℓ,b1} and {T̂ (θ) = Zu,b2}
for b1, b2 satisfying λℓ,b1 ≤ θ ≤ λu,b2 . Hence (24) follows directly from Lemma

1. Under more favorable DGPs diverging from (17), ĉc(θ, αc) can be significantly
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smaller than Φ−1(1 − α
2
). To see this, let θ = λℓ,bℓ be the lower bound of the

identified set and assume that T̂ (θ) = Zℓ,b̂ℓ
. If the identified set is very large

relative to the standard deviation, we have

tℓ,1(θ, b̂ℓ) ≤
(
1 + ρℓu(b̂ℓ, bu)

)−1 (
Zu,bu + ρℓu(b̂ℓ, bu)Zℓ,b̂ℓ

)
=
(
1 + ρℓu(b̂ℓ, bu)

)−1
(
λ̂ℓ,b̂ℓ − λ̂u,bu

σu,bu
+

(
ρℓu(b̂ℓ, bu)−

σℓ,b̂ℓ
σu,bu

)
Zℓ,b̂ℓ

)
≈ −∞,

(25)

where the approximation ≈ follows from
λ̂ℓ,b̂ℓ

−λ̂u,bu

σu,bu
≈ −∞. In this case,

ĉc(θ, αc) ≈ Φ−1
(
(1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

))
≤ Φ−1 (1− αc) < Φ−1(1− α

2
).

Moreover, if the minimum λℓ,−bℓ is not well separated from λℓ,bℓ , then the upper

bound tℓ,2(θ, b̂ℓ) will be the minimum of several random variables, which will fur-

ther reduce the critical value. I next illustrate the conditional critical value using

a simple example.

Example 5. (Simple Union Bounds) Consider a simple union bound

θ ∈ [min {λ1, λ2} , max {λ1, λ2}]

and the estimator satisfies(
λ̂1 − λ1, λ̂2 − λ2

)
∼ N (0, I2) .

The test statistic has the form

T̂ (θ) = max
{
min

{
λ̂1 − θ, λ̂2 − θ

}
,min

{
θ − λ̂1, θ − λ̂2

}}
.

Assume that T̂ (θ) = λ̂1 − θ. In this case, the conditional critical value is

ĉc(θ;αc) = Φ−1
(
(1− αc)Φ

(
λ̂2 − θ

)
+ αcΦ

(
θ − λ̂2

))
< Φ−1 (1− αc) .

If the minimizer and maximizer are well separated, e.g. λ1 = θ and λ2 → ∞, the

efficient critical value is Φ−1(1 − α), as discussed in Imbens and Manski (2004).

In this case, λ̂2 will be large and ĉ
c(θ;αc) → Φ−1(1−αc), which is slightly conser-
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Figure 2: Left: Conditional Critical Value. Right: Modified Conditional Critical
Value.

vative. This follows from the fact that the conditional critical value is designed to

correct for the case when all elements, except for bℓ and bu, are far away from bind-

ing. On the other hand, if λ̂2 is relatively small, then the critical value is smaller.

In Figure 2 left panel, I plot the rejection region for the simple and conditional

critical values with α = 0.05 and αc = 0.04. The green region denotes the null

parameter space.7 The red curve is the boundary corresponding to the conditional

critical value, and the grey region is the rejection region for the conditional critical

value. Finally, the two square regions filled with lines are the rejection region of

the simple test. The rejection region of the conditional test is strictly larger than

the simple test.

It is important to note that ĉc(θ, αc) may not serve as a valid critical value,

because P (Eℓ ∪ Eu) can be much smaller than one when moving away from (17).

For that reason, next, I show how to construct a uniformly valid modified condi-

tional critical value that retains favorable power properties relative to the simple

critical value.

3.3 The Modified Conditional Critical Value

I introduce a novel modification to the conditional critical value:

ĉm(θ;α) = c̃m(θ, ĉt;α) = max
{
ĉc(θ, αc), ĉt

}
(26)

7The null parameter space mirrors that of testing for sign agreement, see e.g. Miller, Molinari,
and Stoye (2024) and Kim (2024). However, with more than two variables, these two testing
problems do not nest within each other.
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where ĉt is defined later in (30).

To illustrate the construction of the truncation ĉt, let C̃I
m
(c) be the CI based

on (8) with ĉm(θ;α) replaced by c̃m(θ, c;α). Given a potential true value λ, the

rejection rate at θ is

p(c; θ, λ,Σ) = P
(
θ ̸∈ C̃I

m
(c);N (λ,Σ)

)
,

where P (·;N (λ,Σ)) is the probability under (6). It suffices to define the lower

truncation as the minimum value that achieves uniform size control, i.e.

ct(θ) = inf

{
c ∈ R+ : sup

λ∈Λ0(θ)

p(c; θ, λ,Σ) ≤ α

}
, (27)

where Λ0 is the set of feasible λ satisfying H0:

Λ0(θ) =

{
(λℓ, λu) ∈ Λ : min

b∈B
λℓ,b ≤ θ ≤ max

b∈B
λu,b

}
.

Note that ct(θ) ≤ csim = Φ−1(1−α
2
) because p(csim; θ, λ,Σ) ≤ α from the discussion

in Section 3.1. In fact ĉt(θ) is usually significantly smaller than csim. The intuition

is that by virtue of Lemma 1, truncation is unnecessary for DGPs such that

P (Eℓ ∪ Eu;N (λ,Σ)) ≥ 1− α

1− αc
(28)

with αc < α, where Eℓ, Eu are defined in (19). Thus we only need to consider

truncation in more favorable DGPs deviating from (17), i.e. when the minimizer

or maximizer is not well separated, in which case a smaller critical value suffices.

Given (θ, λ), we can calculate p(c; θ, λ,Σ) by simulation. Nevertheless, calculating

C̃I
m
(ct) can be time consuming because (i) we need to calculate ct(θ) for a grid of

θ to get the CI and (ii) Λ0(θ) is an unbounded set, which slows the computation

down.

To improve computational efficiency, I propose a lower truncation that does

not depend on θ. First, note that for given λ, either θ ∈ [θℓ, θm] or θ ∈ [θm, θu],

where θℓ = λℓ,bℓ , θu = λu,bu and θm = (θℓ + θu)/2. As a result, we can bound

p(c; θ, λ,Σ) by

p(c; θ, λ,Σ) ≤ max
{
P
(
[θℓ, θm] ̸⊆ C̃I

m
(c);N (λ,Σ)

)
, P
(
[θm, θu] ̸⊆ C̃I

m
(c);N (λ,Σ)

)}
18



≤max
{
P
(
T̂ (θℓ) > c̃m(θℓ, c) or

{
T̂ (θm) > c̃m(θm, c) and T̂ (θu) > c̃m(θu, c)

}
;N (λ,Σ)

)
,

P
(
T̂ (θu) > c̃m(θu, c) or

{
T̂ (θm) > c̃m(θm, c) and T̂ (θℓ) > c̃m(θℓ, c)

}
;N (λ,Σ)

)}
=:p̄(c, λ,Σ). (29)

Therefore, it is valid, but conservative, to replace p(c; θ, λ,Σ) in (27) with p̄(c, λ,Σ).

In addition, to avoid maximization over an unbounded set, let Λ̂ be a 1− η com-

pact confidence set of λ, with suggested value η = 0.001. In sum, it suffices to

use

ĉt = inf
c

{
c ≥ 0 : sup

λ∈Λ̂η

p̄(c, λ,Σ) + η ≤ α

}
, (30)

and p̄(c, λ,Σ) is defined in (29). In terms of computation, p̄(c, λ,Σ) can be conve-

niently calculated via simulation, and we only need to calculate the maximization

over a bounded set once rather than for a grid of θ. In general, with η small

enough, ĉt is much smaller than Φ−1(1 − α
2
) by the intuition explained around

(28). Moreover, in many examples, the feasible space Λ is a lower dimensional

subspace of R2|B|, so that the supremum is taken over a space much smaller than

R2|B|, which reduces the computational cost.

The lower truncation ĉt is more likely to bind under more favorable DGPs, and

it increases in the tuning parameter αc. Hence, αc trades off the power between

more and less favorable DGPs. A larger αc leads to higher power under less

favorable DGPs, while a smaller αc leads to higher power under more favorable

DGPs. It is possible to choose an optimal αc by, e.g., maximizing the weighted

average power. I leave this to future research.

Remark 1. The relaxation in (29) to get p̄(c, λ,Σ) is not overly conservative. To

see this, if the identified set is large, θm will be covered by the modified conditional

confidence interval with probability close to 1, so the conservativeness introduced

by this relaxation is negligible.8 Conversely, if the identified set is very small, then

the set’s coverage will be similar to the coverage of a point. Moreover, we can

reduce conservativeness by increasing the number of elements in the partition at

the cost of increased computational difficulty.

Example 5. (Simple Union Bounds, Cont.) For simplicity, in this example I let

η = 0. With α = 0.05 and αc = 0.04, we can calculate that ĉt = 1.06. In Figure

8By construction ĉm ≥ 0, thus if
√
n (λu,bu − λℓ,bℓ) → ∞, we have P

(
λ̂ℓ,b̂ℓ

≤ θm ≤ λ̂u,b̂u

)
→

1.
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2 right panel, I plot the rejection region of the modified conditional test. The

blue dotted curve is the boundary corresponding to the lower truncation ĉt, and

the grey region is the rejection region for the modified conditional test. The rest

are the same as in Figure 2 left panel. As we can see, the rejection region of the

modified conditional test is strictly larger than the simple test, leading to power

improvements. Compared to the simple rejection region, the conditional test also

rejects if both λ̂1 and λ̂2 are small. The intuition is that if both λ1 and λ2 are close

to zero, then there are multiple approximate minimizers and maximizers, so we

only need a small critical value. The lower truncation ĉt removes some counter-

intuitive values from the rejection region close to H0, e.g.
(
λ̂1 − θ, λ̂2 − θ

)
=

(ε, ε) ≈ (0, 0).

3.4 Size and Power Properties

I now present the conditions under which the modified conditional CI has asymp-

totic uniform validity.

Assumption 1. (Known Singularity). Aℓ, Au are known |B| × J matrices such

that

λℓ = AℓδP , λu = AuδP (31)

λ̂ℓ = Aℓδ̂n, λ̂u = Auδ̂n

Σ̂n =
[
A′

ℓ A′
u

]′
Ω̂n

[
A′

ℓ A′
u

]
for some (δP , δ̂n, Ω̂n).

Assumption 2. (Asymptotic Normality). Let BL1 denote the set of Lipschitz

functions which are bounded by 1 in absolute value and have Lipschitz constant

bounded by 1. Assume

lim
n→∞

sup
P∈P

sup
f∈BL1

∣∣∣EP

[
f
(√

n
(
δ̂n − δP

))]
− E [f(ξP )]

∣∣∣ = 0,

where ξP ∼ N (0,ΩP ).

Assumption 3. (Full Rank). Let S denote the set of matrices with eigenvalues

bounded below by e > 0 and above by ē ≥ e. For all P ∈ P, ΩP ∈ S.

20



Assumption 4. (Consistent Covariance Estimator). For all ε > 0,

lim
n→∞

sup
P∈P

P
(∥∥∥Ω̂n − ΩP

∥∥∥ > ε
)
= 0

Assumption 5. (Confidence Set of λ). For all η ∈ [0, α
4
), the confidence set Λ̂η

satisfies

lim inf
n

inf
P∈P

P
(
(λℓ, λu) ∈ Λ̂η

)
≥ 1− η.

Assumptions 1, 2, 3 and 4 imply that
√
n
(
λ̂n − λP

)
is asymptotically normal

with a consistently estimable variance. The asymptotic variance is allowed to

be singular, but the source of the singularity, i.e. Aℓ and Au, is known to the

researcher. Given this, we only need to verify whether Aℓ,b1 = −aAu,b2 for some

a > 0 to know whether ρℓu(b1, b2) is at the boundary −1, which simplifies the

construction of ĉc(θ, α). These assumptions hold for the examples in Section 2.2

with finite B under mild conditions, and I give detailed illustration based on RR23

in Appendix C. Assumption 5 requires that Λ̂ is a uniformly valid 1−η confidence

set of (λℓ, λu), e.g.

Λ̂ =
{
(Aℓδ, Auδ) ∈ Λ : δ ∈ ∆̂

}
, ∆̂ =

{
δ :

√
n|δ̂j − δj| ≤ Ω̂

1/2
jj ĉη,∀j = 1, ..., J

}
(32)

ĉη = Q

(
max

j=1,...,J
|Z∗

j |, 1− η

)
, Z∗ ∼ N

(
0, diag(Ω̂)−

1
2 Ω̂diag(Ω̂)−

1
2

)
,

where Q(X, 1− η) is the 1− η quantile of X.

Theorem 1. (Uniform Coverage) Suppose Assumptions 1, 2, 3, 4, and 5 hold.

Let α ∈ (0, 1/2), αc ∈ (α
2
, α), η ∈ [0, α−αc

2
). It holds that

lim sup
n→∞

sup
P∈P

sup
θ∈[λℓ,bℓ

,λu,bu ]
P
(
θ ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
≤ α.

Next, I compare my method to two existing approaches which are also uni-

formly valid: (i) the simple CI given in (12), and (ii) the adjusted bootstrap CI

proposed in YKHS23.

Theorem 2. (Power Comparison with Simple CI) Suppose Assumptions 1, 2, 3,

and 4 hold. Λ̂η is defined as in (32). Let α ∈ (0, 1
2
), αc ∈ (α

2
, α), η ∈ [0, α−αc

2
). If

one of the following two conditions hold
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1. (Symmetric Bounds)Aℓ = Au, and Pn satisfies

lim sup
P∈Pn

max
b1∈B

min
b2∈B

ρℓ(b1, b2) < ρ∗1(α, α
c), (33)

lim sup
P∈Pn

ρℓ(bℓ, bu) < ρ∗2(α, η), (34)

where ρ∗1(α, α
c) and ρ∗2(α, η) are defined in Lemma 10 and Lemma 7, respec-

tively.9

2. (Large Bounds) Let κn = o(
√
n) and κn → ∞, and

Pn =

{
P ∈ P : λu,bu − λℓ,bℓ ≥

κn√
n

}
. (35)

It holds that

1. Modified conditional CI is shorter: there is α′ > α such that

lim inf
n

inf
P∈Pn

P
(
CIm

(
λ̂n, Σ̂n/n;α

)
⊆ CIsim

(
λ̂n, Σ̂n/n;α

′
))

= 1. (36)

2. Modified conditional CI has higher power: for all Pn ∈ Pn, there is a subse-

quence Pan and κ ∈ (0,+∞) thus that

lim inf
an→∞

Pan

(
θan ̸∈ CIm

(
λ̂an , Σ̂an/an;α

))
−Pan

(
θan ̸∈ CIsim

(
λ̂an , Σ̂an/an;α

))
> 0

(37)

for θn = θℓ − κ√
n
. The same applies to the upper bound.

The first part of Theorem 2 considers the case where the upper and lower

bounds are symmetric, as in Kolesár and Rothe (2018), Masten and Poirier (2021),

and RR23. If the correlation coefficients among λ̂ℓ are not too large, the modified

conditional CI is strictly shorter than the simple CI. The upper bounds ρ∗1(α, α
c)

and ρ∗2(α, η) can be easily solved for numerically, and I list the value for a few

combinations:

ρ∗1(0.05, 0.04) = 0.84, ρ∗1(0.10, 0.08) = 0.83,

ρ∗2(0.05, 0.001) ≈ 1, ρ∗2(0.10, 0.001) ≈ 1.

9Here ρℓ(b1, b2) = ρu(b1, b2) = ρℓu(b1, b2), so I only impose restrictions on ρℓ.
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The values are large and thus the restriction (33) is not binding in most applica-

tions.

The second part of Theorem 2 compares the modified conditional CI with the

simple CI in a different set of DGPs. It shows that if the identified set is relatively

large compared to the standard deviation of the estimators, which is O( 1√
n
), the

modified conditional CI is shorter than the simple CI with probability approaching

one. The intuition follows from the discussion around (25).

Theorem 3. (Power Comparison with YKHS23) Let CIYKHS
(
λ̂n, Σ̂n/n;α

)
be

the adjusted bootstrap procedure proposed in Hasegawa et al. (2019) Algorithm 1

equation (15) with tuning parameter m = n
κn
, where κn → ∞ and κn = o(n). Let

a > 0, κ′n = o(
√
κn), κ

′
n → ∞. Define local alternatives

θn = min
b∈B

λℓ,b −
κ′n√
n
a, or θn=max

b∈B
λu,b +

κ′n√
n
a.

Then

lim inf
n→∞

inf
P∈P

P
(
θn ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= 1,

lim sup
n→∞

sup
P∈P

P
(
θn ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
≤ α.

YKHS23 method relies on a random draw of a subsample with sizem = n
κn
, and

thus the convergence rate of the CI to the identified set is
√
m, slower than

√
n.

Theorem 3 follows from the convergence rate of CIYKHS and CIm. The sequence

of θn is rejected by the modified conditional CI with probability approaching one

following from Lemma 2, while it is rejected by CIYKHS with probability bounded

above by α. Hence, CIm has large power improvement upon CIYKHS.

4 Simulation

In this section, I study the size and power properties of the proposed procedures

and compare them to several alternatives. I conduct simulations in the context of

Example 1, i.e. relaxation of the parallel trends assumption as in RR23. Besides

the modified conditional CI proposed in Section 3, I consider two existing proce-

dures for union bounds: (i) the adjusted bootstrap in YKHS23, (ii) the simple CI
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in (12), and (iii) the inference procedure in RR23.10 All three methods are uni-

formly valid. All tuning parameters are set at the values in the papers in which

they are proposed.

Each sample {Yi}ni=1 and estimator is generated by

Yi ∼ N (γ, nΣ) , γ̂ =
1

n

∑
Yi ∼ N (γ,Σ) .

The inference is conducted using the pair (γ̂,Σ). The covariance matrix Σ is

calibrated from the empirical results reported in (i) Dustmann et al. (2022) Figure

7(c), (ii) Benzarti and Carloni (2019) Figure 2(E), (iii) Lovenheim and Willén

(2019) Figure 3(A), and (iv) Christensen, Keiser, and Lade (2023) Figure 5(b).

Specifically, Σ is set to be the estimated covariance matrix for t = −T , ...,−1, 1,

where T is reported under Figure 3. For each Σ, I considered three true values

for γ: (i) the parallel trends assumption holds, i.e. γpre = 0T ; (ii) there is a small

violation of the parallel trends, where γpre is calibrated from the same source as

Σ; (iii) there is a large violation, where γpre = (10σM , 0T−1), σM = maxb∈B {σℓ,b}.
Without loss of generality, I normalize γpost = 0. In sum, I consider 4 × 3 = 12

empirically motivated DGPs. Note that the simulation results of the modified

conditional CI, the RR23 CI, and the simple CI are invariant to n, while YKHS

depends on n because of a subsampling step. I set n = 5000 and S = 1000 sample

draws.

In Figure 3, I plot the rejection rate near the upper bound. The lower bound is

similar and thus omitted. The horizontal axis is the value of θ, while the vertical

axis is the rate that θ is not included in the CI. The asterisks represent the

identified set, and the nominal rejection rate is 10%. The modified conditional CI

is the red curve and it has proper size control in all simulation designs. The simple

CI is the black dotted curve and it has significantly lower power than modified

conditional CI in all designs.

RR23 CI is plotted in blue dashed curves. The performance of RR23 varies

with the DGPs, and the power is usually between the modified conditional CI and

simple CI, see e.g. Figure 3a, 3b, and 3d. In some DGPs, RR23 may perform

10YKHS23 propose two CIs in Algorithm 1 equation (15): one with the tuning parameter
m/N → 0,m → ∞ and the other with m = N . The second one is not uniformly valid, and
thus I only consider the first one with m = N/ log(log(N)) as suggested in their Section S1.4.
For RR23, I use their hybrid conditional CI with tuning parameter η = α

10 , which is the default
choice in their code. For my CI, αc = 0.8α, η = 0.001.
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worse than the simple CI, e.g. in Figure 3g. When there is only one large violation,

for example in Figure 3i-3l, the minimum and maximum of the union bound are

well-separated from other bounds, and RR23 is near optimal by their Corollary

3.1. In this case, the modified conditional CI has a slightly smaller rejection rate

and is close to optimal.

YKHS is plotted in green circled curves. YKHS has slightly higher power than

the modified conditional CI for points very close to the identified set but often

suffers from large power loss for points farther away, see e.g. all designs except

Figure 3c and 3g. This is consistent with the slower convergence rate of the YKHS

CI to the identified set.

In Table 1, I report the median CIs.11 I compare the differences between the

length of median CIs and the length of the union bound estimates, as a measure

of efficiency.12 The difference of the modified conditional CI is the shortest, or

slightly larger than the shortest, in all DGPs. It significantly reduces the value of

RR23 (resp. YKHS, simple CI) by a proportion up to 43% (resp. 32%, 37%), see

third panel with small violation (resp. fourth panel with parallel trends, fourth

panel with parallel trends).

The power of modified conditional CI is not sensitive to the tuning parameter

αc. When αc varies from 0.06 to 0.09, the largest change in the rejection rate

across all DGPs is 0.12, and the average change in the length of the median CI,

net of the length of the union bound estimate, is 13%. The average computing

times on a standard PC without parallelization for T = 3, 4, 9, 15 are 80s, 80s,

100s, and 260s, respectively.

5 Empirical Illustration

In this section, I apply the modified conditional CI to the sensitivity analysis in

Dustmann et al. (2022). The authors study the labor market effects of the mini-

mum wage implemented by the German government in January 2015, impacting

approximately 15% of the workforce. The minimum wage policy remains a subject

of considerable controversy within the labor market, as it simultaneously addresses

wage inequality while potentially leading to disemployment. One main conclusion

11A median CI is the median lower bound of the 1 − α CI to the median upper bound, and
the median is taken over S samples.

12The consistent union bound estimate is
[
minb∈B λ̂ℓ,b, maxb∈B λ̂u,b

]
.
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Table 1: Simulation Results - Median CI

Point Modi. Con. RR23 YKHS Simple

Dustmann et al. (2022) T = 3

Parallel CI [-0.188, 0.188] [-0.470, 0.456] [-0.505, 0.492] [-0.486, 0.502] [-0.578,0.565]

[0, 0] Diff. 0.550 0.621 0.612 0.768

Small Vio. CI [-0.196, 0.195] [-0.467, 0.475] [-0.504, 0.505] [-0.492, 0.504] [-0.576,0.581]

[−0.080, 0.080] Diff. 0.551 0.619 0.605 0.766

Large Vio. CI [-2.508, 2.503] [-2.857, 2.852] [-2.840, 2.836] [-2.955, 2.995] [-2.920, 2.916]

[−0.316, 0.316] Diff. 0.698 0.666 0.939 0.825

Benzarti and Carloni (2019) T = 4

Parallel CI [-0.028, 0.029] [-0.058, 0.059] [-0.067, 0.067] [-0.070, 0.074] [-0.075, 0.075]

[0, 0] Diff. 0.061 0.077 0.088 0.093

Small Vio. CI [-0.085, 0.085] [-0.120, 0.119] [-0.121, 0.122] [-0.130, 0.140] [-0.130, 0.130]

[−0.080, 0.080] Diff. 0.069 0.073 0.101 0.090

Large Vio. CI [-0.316, 0.317] [-0.359, 0.354] [-0.358, 0.354] [-0.374, 0.368] [-0.368, 0.363]

[−0.316, 0.316] Diff. 0.080 0.079 0.109 0.098

Lovenheim and Willén (2019) T = 9

Parallel CI [-0.909, 0.884] [-1.886, 1.867] [-2.341, 2.343] [-1.709, 1.800] [-2.235, 2.236]

θ ∈ [0, 0] Diff. 1.960 2.891 1.715 2.678

Small Vio. CI [-1.360, 1.354] [-2.261, 2.225] [-2.927, 2.893] [-2.193, 2.194] [-2.590, 2.567]

[−0.993, 0.993] Diff. 1.772 3.106 1.673 2.442

Large Vio. CI [-9.366, 9.332] [-10.034, 10.174] [-9.999, 10.128] [-10.201, 10.483] [-10.153, 10.323]

[−9.350, 9.350] Diff. 1.509 1.428 1.985 1.778

Christensen et al. (2023) T = 15

Parallel CI [-0.108, 0.108] [-0.197, 0.195] [-0.225, 0.227] [-0.233, 0.242] [-0.247, 0.249]

[0, 0] Diff. 0.176 0.236 0.259 0.280

Small Vio. CI [-0.279, 0.281] [-0.391, 0.409] [-0.391, 0.405] [-0.431, 0.445] [-0.416, 0.434]

[−0.276, 0.276] Diff. 0.240 0.236 0.316 0.290

Large Vio. CI [-0.932, 0.933] [-1.040, 1.029] [-1.036, 1.025] [-1.084, 1.064] [-1.062, 1.047]

[−0.934, 0.934] Diff. 0.204 0.196 0.283 0.243
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of Dustmann et al. (2022) is that the minimum wage increase resulted in higher

wages without causing a decline in employment levels.

To study the employment effect, the authors estimate the DiD design

log(emprt) =
2016∑

τ=2011,τ ̸=2014

γτGAP r1 [τ = t] + αr + ξt + εrt (38)

where log(emprt) is the log employment in district r, time t; GAP r is a measure

of the exposure to the minimum wage; αr and ξt are district and year fixed effects.

The parameter vector γ is the event study coefficients with γ2014 normalized to

zero. Figure 4 left panel shows the estimated coefficients {γ̂τ} from specification

(38). Under the parallel trends assumption, the high and barely exposed districts

evolved at the same rate in the absence of the minimum wage policy. In this

context, the coefficients γ2015 and γ2016 in the post-policy years serve as measures

for the employment effects of the minimum wage policy. However, Figure 4 in-

dicates that the coefficients γ2011, γ2012 and γ2013 in the pre-policy years are not

statistically or economically indistinguishable from zero. Hence, it is evident that

the parallel trends assumption does not hold. Consequently, the authors conduct

sensitivity analysis using RR23, as detailed in their Appendix A.14.

In particular, the authors conduct the sensitivity analysis using the second

differences relative magnitudes (SDRM) relaxation. This approach assumes that

|(ξ2015 − γ2014)− (γ2014 − γ2013)| ≤M max
s=2014,2013

|(γs − γs−1)− (γs−1 − γs−2)| ,

where ξ2015 represents the potential differential trend without the minimum wage

policy. Essentially, without the minimum wage policy, the slope change at t = 2015

is bounded above by a factor of M times the previous slope changes. M measures

the level of relaxation. This aligns with the approximately linear pretrend observed

in Figure 4. The employment effect of interest is quantified as γ2015−ξ2015.13 That

is, with one unit increase in GAP and other covariates fixed, the employment rate

will increase by 100(γ2015 − ξ2015)% in expectation.

In Figure 4 right panel, I report the 95% CI for different values of M con-

structed based on three different methods: the modified conditional CI proposed

in Section 3, the hybrid CI in RR23, and the simple CI in (12).14 We can clearly

13The identified set is given in Appendix C.
14The estimated coefficient and covariance are available but the data for regression is confi-
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Figure 4: Left: Estimated Employment Effect. Right: Sensitivity Analysis under
SDRM.

see that the modified conditional CI is the shortest and the simple CI is the widest

for all M , and the improvement of the modified conditional CI upon the simple

CI doubles the improvement of RR23 upon the simple CI.

The authors compare the minimum wage induced disemployment effects and

wage effects. To do so, they estimate the wage effect using the same DiD design

as (38) with regressor log(wagert). After adjusting the linear pretrend, the point

estimate of the wage effect at t = 2015 is 0.6, represented by a dashed line (with

an inverse sign) in Figure 4 right panel. The authors are interested in whether

the employment effect is robustly higher than −0.6, leading to an employment

elasticity with respect to own wage less than 1 in absolute value. When using the

natural benchmark M = 1, only the modified conditional CI is above the negative

wage effect. It is also informative to report the “breakdown” relaxation at which

the wage effect is no longer larger than the (negative) employment effect. In this

case, the breakdown M for the hybrid CI is around 0.75, while the one for the

simple CI is around 0.6. Remarkably, the breakdown relaxation M of my method

is 33% to 66% larger than the other two. The average computing time of my

method is 50s per confidence interval.

dential, thus I can not implement the YKHS23 bootstrap procedure.
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6 Conclusion

In this paper, I propose inference procedures for a target object whose identified

set is a union of bounds. When the union is taken over a finite set, I introduce

a novel modified conditional CI based on a modified conditional critical value,

which significantly improves upon existing procedures over a large set of DGPs.

There are a few directions for future work. First, the important tuning parameter

αc trades off the rejection rate between less and more favorable DGPs, and the

suggested rule of thumb value is 4
5
α. It would be useful to consider a choice of

αc that optimizes some objective function, for example, weighted average power.

In addition, the idea of modified conditional inference could potentially apply to

other non-standard inference problems like directionally differentiable functions.

This idea does not impose shape restrictions, e.g. convexity, on the null space.

Lastly, my inference procedures assume a correct specification that the union

bound is non-empty. If the model is misspecified, the CI can be an empty set

or spuriously short. It would be interesting to consider misspecification robust

inference for general union bounds, in the spirit of Stoye (2020) and Andrews and

Kwon (2023).

A Proofs for Theorems and Propositions

For P ∈ P , let δP denote the true value of δ, λP,ℓ = AℓδP , λP,u = AuδP ,

θP,ℓ = min
b∈B

λP,ℓ,b, θP,u = max
b∈B

λP,u,b, θP,m = (θP,ℓ + θP,u)/2.

Let

Zδ ∼ N (0,Ω0) , Zℓ,b =
Aℓ,bZδ

σ0,ℓ,b
, Zu,b = −Au,bZδ

σ0,u,b

denote the limiting distribution of

√
n
(
δ̂n − δPn

)
,

√
n
(
λ̂ℓ,b − λPn,ℓ,b

)
σ̂ℓ,b

,

√
n
(
λPn,u,b − λ̂u,b

)
σ̂u,b
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with Ω0 and Pn specified in Lemma 3 and σ0,ℓ,b =
√
Aℓ,bΩ0A′

ℓ,b, σ0,u,b =
√
Au,bΩ0A′

u,b.

For k = ℓ,m, u, let

Tk = max

{
min
b∈B

Zℓ,b + λkℓ,b, min
b∈B

Zu,b + λku,b

}
(39)

be the asymptotic analog of T̂ (θPn,k), where (λkℓ, λku) are specified in Lemma 3

(78).

Let Bℓ be a subset of B such that Aℓ,b1 ̸= Aℓ,b2 for all b1 ̸= b2, b1, b2 ∈ Bℓ. If

there is Aℓ,b1 = Aℓ,b2 for b1, b2 ∈ B , keep only min{b1, b2} in Bℓ. Construct Bu

in the same way. Let bkℓ, bku be the asymptotic analog of b̂ℓ(θk) and b̂u(θk), with

support Bkℓ, Bku:

bkℓ = min

{
argmin

b∈Bℓ

Zℓ,b + λkℓ,b

}
, bku = min

{
argmin

b∈Bu

Zu,b + λku,b

}
,

Bkℓ = {b ∈ Bℓ : λkℓ,b <∞} , Bku = {b ∈ Bu : λku,b <∞} . (40)

Define the asymptotic analog of (tℓ,1, tℓ,2) in Lemma 1 evaluated at θPn,k as

tkℓ,1(b) =


min
b̃∈B

Zu,b̃+ρℓu(b,b̃)Zℓ,b+t†kℓ,1(b,b̃)

1+ρℓu(b,b̃)
, if min

b̃∈B
ρℓu(b, b̃) > −1

−∞ elsewhere
(41)

t†kℓ,1(b, b̃) = λku,b̃ + ρℓu(b, b̃)λkℓ,b.

Similarly, we can define tkℓ,2, tu,1, tu,2. If
∣∣λku,b̃∣∣ = ∞ and |λkℓ,b| = ∞, t†kℓ,1(b, b̃)

may not be well defined. However, as we will see later, this case is irrelevant for

the proof. Let

cck =

Φ−1
(
αcΦ

(
tkℓ,1(bkℓ)

)
+ (1− αc)Φ

(
tkℓ,2(bkℓ)

))
, if Zℓ,bkℓ + λkℓ,bkℓ ≥ Zu,bku + λku,bku

Φ−1
(
αcΦ

(
tku,1(bku)

)
+ (1− αc)Φ

(
tku,2(bku)

))
, if Zℓ,bkℓ + λkℓ,bkℓ < Zu,bku + λku,bku

(42)

be the asymptotic analog of ĉc(θk, α
c). Let

p(c) = max {P (Tℓ > cmℓ (c) or {Tm > cmm(c) and Tu > cmu (c)}) , (43)

P (Tu > cmu (c) or {Tm > cmm(c) and Tℓ > cmℓ (c)})} ,
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where cmk (c) = max {cck, c} and Tk, c
c
k are defined in (39), (42). Lastly, let

ct = inf
c
{c ≥ 0 : p(c) ≤ α− η} , (44)

be the asymptotic analog of ĉt defined (30).

I use Φ for the CDF ofN (0, 1) and Φ2(x1, x2; ρ) for the CDF ofN (0, [1, ρ; ρ, 1]) .

Proof of Lemma 1.

Proof. Let b1 satisfy λℓ,b1 ≤ θ, and I show (22). Similar proof applies to the upper

bound. The proof mainly uses Theorem 5.2 and Lemma A.1 in Lee, Sun, Sun,

and Taylor (2016), and below I follow their notation. For s ∈ B, let

As =

(
1|B|×1

−1

)
, bs =

(
Zℓ

−Zu,s

)
.

It is easy to see that {
T̂ (θ) = Zℓ,b1

}
=
⋃
s∈B

{AsZℓ,b1 ≤ bs} . (45)

To simplify AsZℓ,b1 ≤ bs, note that for all b ∈ B,

Zℓ,b1 ≤ Zℓ,b ⇔

Zℓ,b1 ≤ (1− ρℓ(b1, b))
−1 (Zℓ,b − ρℓ(b1, b)Zℓ,b1) if ρℓ(b1, b) < 1

0 ≤ Zℓ,b −Zℓ,b1 if ρℓ(b1, b) = 1

Zℓ,b1 ≥ Zu,s ⇔

Zℓ,b1 ≥ (1 + ρℓu(b1, s))
−1 (Zu,s + ρℓu(b1, s)Zℓ,b1) if ρℓu(b1, s) > −1

0 ≥ Zu,s −Zℓ,b1 if ρℓu(b1, s) = −1.

Therefore,

{AsZℓ,b1 ≤ bs} =
{
V−
s ≤ Zℓ,b1 ≤ V+,V0 ≥ 0

}
, where (46)

V−
s =

(1 + ρℓu(b1, s))
−1 (Zu,s + ρℓu(b1, s)Zℓ,b1) if ρℓu(b1, s) > −1

−∞ if ρℓu(b1, s) = −1,

V+ =

 min
b∈B:ρℓ(b1,b)<1

(1− ρℓ(b1, b))
−1 (Zℓ,b − ρℓ(b1, b)Zℓ,b1) if {b ∈ B, ρℓ(b1, b) < 1} ≠ ∅

+∞ if {b ∈ B, ρℓ(b1, b) < 1} = ∅,
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V0
s =


min

b∈B:ρℓ(b1,b)=1
Zℓ,b −Zℓ,b1 if ρℓu(b1, s) > −1, max

b∈B
ρℓ(b1, b) = 1

min
{

min
b∈B:ρℓ(b1,b)=1

Zℓ,b −Zℓ,b1 ,Zℓ,b1 −Zu,s

}
if ρℓu(b1, s) = −1, max

b∈B
ρℓ(b1, b) = 1

1 elsewhere.

Zℓ,b1 ⊥
{
V+, {V−

s ,V0
s }s∈B

}
by construction. With tℓ,1(θ, b1) and tℓ,2(θ, b1) in

Lemma 1,

[tℓ,1(θ, b1), tℓ,2(θ, b1)] =
⋃
s∈B

[
V−
s ,V+

]
.

Let Fµ(x; t1, t2) denote CDF of a N (µ, 1) random variable truncated to [t1, t2],

i.e.

Fµ(x; t1, t2) =
Φ(x− µ)− Φ(t1 − µ)

Φ(t2 − µ)− Φ(t1 − µ)
. (47)

where µ = E [Zℓ,b1 ] =
λℓ,b1

−θ

σℓ,b1
≤ 0. Then by Theorem 5.3 in Lee et al. (2016),

Fµ (Zℓ,bℓ ; tℓ,1(θ, b1), tℓ,2(θ, b1))

∣∣∣∣∣⋃
s∈B

{AsZℓ,b1 ≤ bs} ∼ Unif(0, 1), (48)

and by Lemma A.1 in Lee et al. (2016), for all z ∈ R,

F0 (z; tℓ,1(θ, b1), tℓ,2(θ, b1)) ≤ Fµ (z; tℓ,1(θ, b1), tℓ,2(θ, b1)) . (49)

Therefore, we have

Φ
(
T̂ (θ)

)
− Φ (tℓ,1(θ, b1))

Φ (tℓ,2(θ, b1))− Φ (tℓ,1(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

}
∼F0 (Zℓ,b1 ; tℓ,1(θ, b1), tℓ,2(θ, b1))

∣∣∣{T̂ (θ) = Zℓ,b1

}
FOSD

⪯ Fµ (Zℓ,b1 ; tℓ,1(θ, b1), tℓ,2(θ, b1))
∣∣∣{T̂ (θ) = Zℓ,b1

}
∼ Unif(0, 1).
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Proof of Proposition 1.

Proof. To simplify notation, let

Bℓ0 =
{
b ∈ Bℓ : λℓ,b ≤ θ, P

(
b = b̂ℓ

)
> 0
}
,

Bu0 =
{
b ∈ Bu : λu,b ≥ θ, P

(
b = b̂u

)
> 0
}
.

Let b1 ∈ Bℓ0. Fµ is defined in (47). By Lemma 1, it holds that

P
(
T̂ (θ) > ĉc(θ, αc)

∣∣∣T̂ (θ) = Zℓ,b1

)
=P

(
F0

(
T̂ (θ); tℓ,1(θ, b1), tℓ,2(θ, b1)

)
> F0 (ĉ

c(θ, αc); tℓ,1(θ, b1), tℓ,2(θ, b1))
∣∣∣T̂ (θ) = Zℓ,b1

)
≤P

(
Fµ

(
T̂ (θ); tℓ,1(θ, b1), tℓ,2(θ, b1)

)
> 1− αc

∣∣∣T̂ (θ) = Zℓ,b1

)
=P (Unif(0, 1) > 1− αc) = αc, (50)

where the second line follows from F0(x; t1, t2) strictly increasing in x, the inequal-

ity follows from (49) and by construction

F0 (ĉ
c(θ, αc); tℓ,1(θ, b1), tℓ,2(θ, b1)) = 1− αc,

and the last line follows from (48). Let b2 ∈ Bu0. Similar argument gives

P
(
T̂ (θ) > ĉc(θ, αc)

∣∣∣T̂ (θ) = Zu,b2

)
≤ αc. (51)

Therefore, we have

P
(
T̂ (θ) > ĉc(θ, αc)

∣∣∣Eℓ ∪ Eu

)
=
∑

b1∈Bℓ0

P
(
T̂ (θ) > ĉc(θ, αc)

∣∣∣T̂ (θ) = Zℓ,b1

)
P
(
T̂ (θ) = Zℓ,b1

∣∣∣Eℓ ∪ Eu

)
+
∑

b2∈Bu0

P
(
T̂ (θ) > ĉc(θ, αc)

∣∣∣T̂ (θ) = Zu,b2

)
P
(
T̂ (θ) = Zu,b2

∣∣∣Eℓ ∪ Eu

)
≤αc

∑
b1∈Bℓ0

P
(
T̂ (θ) = Zℓ,b1

∣∣∣Eℓ ∪ Eu

)
+ αc

∑
b2∈Bu0

P
(
T̂ (θ) = Zu,b2

∣∣∣Eℓ ∪ Eu

)
= αc

where the first equality follows from
{
T̂ (θ) = Zℓ,b1

}
b1∈B1

,
{
T̂ (θ) = Zu,b2

}
b2∈B2

is a

partition of Eℓ∪Eu under (21), and the inequality follows from (50) and (51).
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Proof of Theorem 1.

Proof. By Lemma 3, we only need to show (75) for sequence Pn satisfying Lemma

3 conditions 1 and 2.

Step 1. I show that for all c ∈ R+,

p̄
(
c, λPn , Σ̂n/n

)
p−→ p(c) (52)

where p̄
(
c, λPn , Σ̂n/n

)
is defined in (29) and p(c) is defined in (43). Note that by

Assumption 4 and (77), Ω̂n
p−→ Ω0, thus there is τn = o(1) such that

Ω̂n = Ω0 + op(τn). (53)

Let

Σn =

{[
Aℓ

Au

]
Ω

[
Aℓ

Au

]′
: Ω ∈ S, ∥Ω− Ω0∥ ≤ τn

}
.

To show (52), note that for all ε > 0,

Pn

(∣∣∣p̄(c, λPn , Σ̂n/n
)
− p(c)

∣∣∣ > ε
)

≤Pn

(∣∣∣p̄(c, λPn , Σ̂n/n
)
− p(c)

∣∣∣ > ε, Σ̂n ∈ Σn

)
+ Pn

(
Σ̂n ̸∈ Σn

)
≤Pn

(
sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| > ε

)
+ o(1)

=1

[
sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| > ε

]
+ o(1),

where the first inequality follows from P (A) ≤ P (A ∩ B) + P (Bc), the second

inequality follows from (53), and the last line is because p̄ (c, λPn ,Σ/n) and p(c)

are non-random. Thus it suffices to show

sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| → 0.

To do so, there is a sequence Σn ∈ Σn such that

lim sup
n

sup
Σ∈Σn

|p̄ (c, λPn ,Σ/n)− p(c)| = lim sup
n

|p̄ (c, λPn ,Σn/n)− p(c)|
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and it suffices to show

lim
n
p̄ (c, λPn ,Σn/n) = p(c). (54)

First consider the case when
√
n (λPn,u,bu − λPn,ℓ,bℓ) ∈ R along Pn. Note that

g(Tℓ, Tm, Tu, c
c
ℓ, c

c
m, c

c
u) = 1 [Tℓ > cm(ccℓ, c) or {Tm > cm(ccm, c) and Tu > cm(ccu, c)}]

is bounded and continuous on D with

P (D) = P (Tℓ = cm(ccℓ, c) or Tm = cm(ccm, c) or Tu = cm(ccu, c)) = 0.

The second equality follows from (i) (Tℓ, Tm, Tu) is continuously distributed and (ii)

Tℓ ⊥ ccℓ, Tm ⊥ ccm, Tu ⊥ ccu by construction. Thus (54) follows from Portmanteau’s

Lemma.

Second, when
√
n (λPn,u,bu − λPn,ℓ,bℓ) → ∞ along Pn, let

p̃(c, λPn ,Σn/n) = max
{
P
(
T̂ (λPn,ℓ,bℓ) > c̃m(λPn,ℓ,bℓ , c);N (λPn ,Σn)

)
, (55)

P
(
T̂ (λPn,u,bu) > c̃m(λPn,u,bu , c);N (λPn ,Σn)

)}
and we have

0 ≤ p̄ (c, λPn ,Σn/n)− p̃ (c, λPn ,Σn/n) ≤ P
(
T̂ (θm) > c̃m(θm, c);N (λPn ,Σn)

)
= o(1)

where the last equality follows from Lemma 4. Then, (54) follows from

p̃(c, λPn ,Σn/n) =max
{
P
(
T̂ (θn,ℓ) > c̃m(θn,ℓ, c);N (λPn ,Σn)

)
,

P
(
T̂ (θn,u) > c̃m(θn,u, c);N (λPn ,Σn)

)}
→max {P (Tℓ > cmℓ (c)) , P (Tu > cmu (c))} = p(c) (56)

(56) follows from Portmanteau’s Lemma and Lemma 4.

Step 2. I show that for all ε > 0,

lim sup
n

Pn

(
ĉtPn

≤ ct − ε
)
= 0
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where ct is defined in (44) and ĉtPn
is defined in (76). Note that by definition

p̄
(
ĉtPn

, λPn , Σ̂n/n
)
≤ α− η

and p̄
(
c, λPn , Σ̂n/n

)
is decreasing in c. Thus

lim sup
n

Pn

(
ĉtPn

≤ ct − ε
)
≤ lim sup

n
Pn

(
p̄
(
ct − ε, λPn , Σ̂n/n

)
≤ α− η

)
= 0

where the last equation is by

p̄
(
ct − ε, λPn , Σ̂n/n

)
p−→ p

(
ct − ε

)
> α− η, (57)

and (57) follows from Step 1 (52).

Step 3. Lastly, we show (75). Let

E(θ, c) =
{
T̂ (θ) > c̃m(θ, c)

}
.

For all ε > 0, it holds that

lim sup
n→∞

max
{
Pn

(
E(θℓ, ĉ

t
Pn
) ∨
{
E(θm, ĉ

t
Pn
) ∧ E(θu, ĉtPn

)
})
,

Pn

(
E(θu, ĉ

t
Pn
) ∨
{
E(θm, ĉ

t
Pn
) ∧ E(θℓ, ĉtPn

)
})}

≤ lim sup
n→∞

max

{
Pn

(
E(θℓ, c

t − ε) ∨
{
E(θm, c

t − ε) ∧ E(θu, ct − ε)
})

,

Pn

(
E(θu, c

t − ε) ∨
{
E(θm, c

t − ε) ∧ E(θℓ, ctPn
− ε)

})}
+ lim sup

n→∞
Pn

(
ĉtPn

≤ ct − ε
)

=p(ct − ε) (58)

(58) follows from Lemma 4 and Portmanteau’s Lemma. Here I omit the subscript

Pn in θℓ, θm, θu and α in ĉm, c̃m for simplicity. Since (58) holds at all ε > 0, we

can take a sequence of ε→ 0, then by Lemma 9,

lim sup
n→∞

max
{
Pn

(
T̂ (θℓ) > ĉm(θℓ;α) ∨

{
T̂ (θm) > ĉm(θm;α) ∧ T̂ (θu) > ĉm(θu;α)

})
,

Pn

(
T̂ (θu) > ĉm(θu, α) ∨

{
T̂ (θm) > ĉm(θm;α) ∧ T̂ (θℓ) > ĉm(θℓ;α)

})}
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≤ lim
ε→0

p(ct − ε) = p(ct) ≤ α− η.

The last inequality is by construction. This completes the proof.

Proof of Theorem 2.

Proof. Part I. Symmetric Bounds. Since λℓ = λu and λ̂ℓ = λ̂u, let

T̂ (θ) = max

{
min
b∈B

{Zb} ,min
b∈B

{−Zb}
}
,

where Zu,b = Zb =
λ̂b−θ
σ̂b/

√
n
, Zℓ,b = −Zb.

Step 1. By Lemma 8, there is α′
1 > α such that

lim inf
n

inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

1

2
)

)
= 1. (59)

By Lemma 11, there is α′
2 > α such that

lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n/n;α

′
2)
)
= 1.

Let α′ = min {α′
1, α

′
2} > α, and then (36) follows from

lim inf
n

inf
P∈P

P
(
CIm

(
λ̂n, Σ̂n/n;α

)
⊆ CIsim

(
λ̂n, Σ̂n/n;α

′
))

= lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈ CIsim(λ̂n, Σ̂n/n;α

′)
)

≥ lim inf
n

inf
P∈P

P

(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n/n;α

′), ĉt ≤ Φ−1(1− α′

2
)

)
≥ lim inf

n
inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n/n;α

′)
)

+ lim inf
n

inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

2
)

)
− 1

≥ lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n/n;α

′
2)
)

+ lim inf
n

inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

1

2
)

)
− 1 = 1

Step 2. I show (37) with θn = θℓ − κ√
n
. Note that by (36), there is α′ > α such
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that

lim inf
n

Pn

(
θn ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
− Pn

(
θn ̸∈ CIsim

(
λ̂n, Σ̂n/n;α

))
≥ lim inf

n
Pn

(
θn ̸∈ CIsim

(
λ̂n, Σ̂n/n;α

′
))

− Pn

(
θn ̸∈ CIsim

(
λ̂n, Σ̂n/n;α

))
≥ lim inf

n
Pn

(
T̂ (θn) ∈

(
Φ−1(1− α′

2
),Φ−1(1− α

2
)

))
(60)

Under Pn, we can show that there is a subsequence Pan such that (77), (78) hold

and

T̂ (θn)
d−→ T ∗ := max

{
min
b∈B

{
Zb + λ̄b +

κ

σb

}
, min

b∈B

{
−Zb − λ̄b −

κ

σb

}}
,

where

λ̄b = lim
an

√
an(λb − θℓ)

σb
≥ 0.

Let c1 = Φ−1(1− α′

2
), c2 = Φ−1(1− α

2
). Then I show that there is κ ∈ R such

that

P (T ∗ ∈ (c1, c2)) > 0.

To do so, let b∗ be the element with largest variance, i.e. σb∗ ≥ maxb∈B̄ σb, where

B̄ =
{
b ∈ B : λ̄b ∈ R

}
.

Note that we have λ̄bℓ = 0, thus B̄ ̸= ∅. Then

P (T ∗ ∈ (c1, c2))

≥P
(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1, Zb + λ̄b +

κ

σb
≥ c1, b ∈ B̄\{b∗}

)
=P

(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1,Eb ≥ c1 − ρb∗bZb∗ − λ̄b −

κ

σb
, b ∈ B̄\{b∗}

)
≥P

(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1,Eb ≥ c1 − λ̄b −

κ

σb
− |ρb∗b|(c1 − λ̄b∗ −

κ

σb∗
), b ∈ B̄\{b∗}

)
=P

(
c2 ≥ Zb∗ + λ̄b∗ +

κ

σb∗
≥ c1

)
×

P

(
Eb ≥ c1 − λ̄b − |ρb∗b|

(
c1 − λ̄b∗

)
−
(
σb∗

σb
− |ρb∗b|

)
κ

σb∗
, b ∈ B̄\{b∗}

)
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where Eb = Zb − ρ(b, b∗)Zb∗ . There is κ ∈ R such that

P

(
Eb ≥ c̄− λ̄b − |ρb∗b|

(
c̄− λ̄b∗

)
−
(
σb∗

σb
− |ρb∗b|

)
κ

σb∗
, b ∈ B̄\{b∗}

)
> 0

and therefore

P (T ∗ ∈ (c1, c2)) > 0. (61)

(37) follows from (60) and (61).

Part II. Large Bounds. I first show (36). By Lemma 12, there is α′
1 > α such

that

lim inf
n

inf
n
P

(
ĉt ≤ Φ−1(1− α′

1

2
)

)
= 1.

Let α′ = min {α′
1, 2α

c} > α and c1 = Φ−1(1− α′

2
). I show that

lim inf
n

inf
n
P

(
θ ̸∈ CIm(λ̂, Σ̂n/n, α) for all θ > max

b∈B
λ̂u,b +

σ̂u,b√
n
c1

)
= 1.

The proof for the lower bound is symmetric.

Let κ′n → ∞ and κ′n ≪ κn. Lemma 2 suggests that

lim inf
n

inf
n
P

(
θ ̸∈ CIm(λ̂, Σ̂n/n, α) for all θ > max

b∈B
λ̂u,b +

σ̂u,b√
n
κ′n

)
= 1.

Then I simplify ĉc(θ, αc) for

θ ∈
(
max
b∈B

λ̂u,b +
σ̂u,b√
n
c1, max

b∈B
λ̂u,b +

σ̂u,b√
n
κ′n

]
.

In this case, under (35),

Zℓ,b̂ℓ
≤ Zℓ,bℓ =

λ̂ℓ,bℓ − θ

σ̂ℓ,bℓ/
√
n
≤ λ̂ℓ,bℓ − λ̂u,bu − σ̂u,bu/

√
nc1

σ̂ℓ,bℓ/
√
n

→ −∞ (62)

Zu,b̂u
=
θ − λ̂u,b̂u
σ̂u,b̂u/

√
n
∈ (c1, κ

′
n] . (63)

Thus, with probability approaching one,

T̂ (θ) = Zu,b̂u
> c1, (64)

ĉc(θ, αc) = Φ−1
(
αcΦ

(
tu,1(θ, b̂u)

)
+ (1− αc)Φ

(
tu,2(θ, b̂u)

))
.
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Moreover, (62) and (63) implies that

Φ
(
tu,1(θ, b̂u)

)
≤ Φ

((
1 + ρℓu(bℓ, b̂u)

)−1 (
Zℓ,bℓ + ρℓu(bℓ, b̂u)Zu,b̂u

))
= Φ

(
Zℓ,bℓ −Zu,b̂u

1 + ρℓu(bℓ, b̂u)
+ Zu,b̂u

)
p−→ 0.

Therefore,

ĉc(θ, αc) ≤ Φ−1
(
(1− αc)Φ

(
tu,2(θ, b̂u)

))
+ o(1) ≤ c1 w.p.a. 1,

where the last inequality follows from α′ ≤ 2αc. Thus by construction,

ĉm(θ, α) ≤ c1 < T̂ (θ),

and θ is rejected.

The proof for (37) is similar to Part I Step 2.

Proof of Theorem 3.

Proof. I show the results with θn = minb∈B λℓ,b − κ′
n√
n
a. By Lemma 2,

lim inf
n→∞

inf
P∈Pn

P
(
θℓ,n ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= 1. (65)

YKHS23 confidence interval has form[
λ̂m,min −

√
n

m
Q∗
(
λ̂∗n,min − λ̂n,min, p̂

)
, λ̂m,max −

√
n

m
Q∗
(
λ̂∗n,max − λ̂n,max, 1− p̂

)]
,

with λ̂∗n,ℓ,b calculated by empirical bootstrap, λ̂m,ℓ,b calculate by a subsample of

size m,

λ̂m,min = min
b∈B

λ̂m,ℓ,b, λ̂n,min = min
b∈B

λ̂n,ℓ,b, λ̂
∗
n,min = min

b∈B
λ̂∗n,ℓ,b,

p̂
p−→ p∗ ∈

[
α
2
, α
]
. The upper bound is defined symmetrically. Note that

P
(
θn ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
≤P

(
θn < λ̂m,min −

√
n

m
Q∗
(
λ̂∗n,min − λ̂n,min, p̂

))

41



+ P

(
θn > λ̂m,max −

√
n

m
Q∗
(
λ̂∗n,max − λ̂n,max, 1− p̂

))
=P

(
Q∗
(√

n
(
λ̂∗n,min − λ̂n,min

)
, p̂
)
<

√
m(λ̂m,min − θn)

)
(66)

+ P
(
Q∗
(√

n(λ̂∗n,max − λ̂n,max), 1− p̂
)
>

√
m(λ̂m,max − θn)

)
. (67)

As for (66), note that

√
m(λ̂m,min−θn) =

√
m(λ̂m,min − λℓ,bℓ) +

√
m(λℓ,bℓ − θn)

=
√
m(λ̂m,min − λℓ,bℓ) + o(1)

d−→ min
b∈B

Zℓ,b + τℓ,b

where τℓ,b = limm

√
m (λm,b − λℓ,bℓ), and the limit distribution is continuous. Thus

(66) = P
(
Q∗
(√

n
(
λ̂∗n,min − λ̂n,min

)
, p̂
)
<

√
m(λ̂m,min − λℓ,bℓ)

)
+ o(1).

Similarly, if
√
m(λu,bu − θn) ∈ R, we have

(67) = P
(
Q∗
(√

n(λ̂∗n,max − λ̂n,max), 1− p̂
)
>

√
m(λ̂m,max − λℓ,bℓ)

)
+ o(1) (68)

with similar argument. If
√
m(λu,bu − θn) → ∞, (68) still holds since both side of

the equation is o(1). In sum, we have

P
(
θn ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
= P

(
λℓ,bℓ ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
+ o(1),

thus by Theorem 2(d) in YKHS23, it holds that

lim sup
n

sup
P
P
(
θn ̸∈ CIYKHS

(
λ̂n, Σ̂n/n;α

))
≤ α. (69)

(65) and (69) complete the proof.
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Online Appendices

B Auxiliary Lemmas

Lemma 2. (
√
n Convergence Rate) Suppose Assumptions 1, 2, 3, 4, and 5 hold.

For all ε > 0, there is κ̄ ∈ R+ such that

lim inf
n

inf
P∈P

P

(
CIm ⊆

[
θℓ −

κ̄√
n
, θu +

κ̄√
n

])
> 1− ε.

Proof. It suffices to show that there is κ̄ ∈ R+ such that

lim inf
n

inf
P∈P

P

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄√
n
, θu +

κ̄√
n

])
> 1− ε.

Following similar argument in Lemma 3, there is subsequence Pan ∈ P such that

lim inf
n

inf
P∈P

P

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄√
n
, θu +

κ̄√
n

])
= lim

an
Pan

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄
√
an
, θu +

κ̄
√
an

])
and Σ(Pan) → Σ0. In addition, note that

Pan

(
T̂ (θ) > ĉm(θ;α) for all θ ̸∈

[
θℓ −

κ̄
√
an
, θu +

κ̄
√
an

])
≥Pan

(
T̂ (θ) > ĉm(θ;α) for all θ < θℓ −

κ̄
√
an

)
+ Pan

(
T̂ (θ) > ĉm(θ;α) for all θ > θu +

κ̄
√
an

)
− 1.

Therefore, it suffices to show that for all ε > 0, there is κ̄ ∈ R+ such that

Pan

(
T̂ (θ) > ĉm(θ;α) for all θ < θℓ −

κ̄
√
an

)
≥ 1− ε

2
, (70)

The proof for the upper bound is symmetric. In the following proof, I use n for

subsequence an to simplify notation.

1



First, I show that for all ε > 0, there is κ̄1 such that

lim inf
n

Pn (An(κ̄1)) ≥ 1− ε

6
, where (71)

An(κ̄1) =

{
T̂ (θ) = Zℓ,b̂ℓ

> Φ−1(1− α− η

2
), for all θ ≤ θℓ −

κ̄1√
n

}
.

To see this,

Pn (An(κ̄1))

=Pn

(
Zℓ,b̂ℓ

≥ min
b∈B

Zu,b,Zℓ,b̂ℓ
> Φ−1(1− α− η

2
), for all θ ≤ θℓ −

κ̄1√
n

)
≥Pn

(
Zℓ,b̂ℓ

≥ Zu,bu ,Zℓ,b̂ℓ
> Φ−1(1− α− η

2
), for all θ ≤ θℓ −

κ̄1√
n

)
≥Pn

(
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

+
κ̄1
σ̂ℓ,b̂ℓ

≥ θu − λ̂u,bu
σ̂u,bu/

√
n

− κ̄1
σ̂u,bu

,
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

+
κ̄1
σ̂ℓ,b̂ℓ

> Φ−1(1− α− η

2
)

)

=Pn

(
κ̄1 ≥

(
1

σ̂ℓ,b̂ℓ
+

1

σ̂u,bu

)−1(
θu − λ̂u,bu
σ̂u,bu/

√
n

−
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ
σ̂ℓ,b̂ℓ/

√
n

)
,

κ̄1 > σ̂ℓ,b̂ℓΦ
−1(1− α− η

2
)−

√
n(λ̂ℓ,b̂ℓ − λℓ,b̂ℓ)

)
.

The existence of κ̄1 follows from

√
n
(
θu − λ̂u,bu

)
= OP (1),

√
n
(
λ̂ℓ,b̂ℓ − λℓ,b̂ℓ

)
= OP (1).

Second, if minb∈B ρℓu(b̃, b) > −1, there is ξ ∈ (0, 1) such that ρ̂ℓu(b̃, bu) > ξ − 1

with probability approaching one by Assumption 1, 2, 3, and 4. Then, for all

ε > 0, there is M̄ ∈ R such that

lim inf
n

Pn (Bn) ≥ 1− ε

6
, where Bn = B1n ∪B2n, (72)

B1n =

{
min
b∈B

ρℓu(b̂ℓ, b) = −1

}
,

B2n =

{
min
b∈B

ρℓu(b̂ℓ, b) > −1,
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1 λu,bu − λ̂u,bu
σ̂u,bu/

√
n

≤ M̄

}

2



because

lim inf
n

Pn (B1n ∪B2n)

=1− lim inf
n

Pn

(
min
b∈B

ρℓu(b̂ℓ, b) > −1,
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1 λu,bu − λ̂u,bu
σ̂u,bu/

√
n

> M̄

)

≥1− lim inf
n

Pn

(
min
b∈B

ρℓu(b̂ℓ, b) > −1,
1

ξ

∣∣∣∣∣λu,bu − λ̂u,bu
σ̂u,bu/

√
n

∣∣∣∣∣ > M̄

)

≥1− lim inf
n

Pn

(
1

ξ

∣∣∣∣∣λu,bu − λ̂u,bu
σ̂u,b/

√
n

∣∣∣∣∣ > M̄

)

and the existence of M̄ follows from
∣∣∣λu,bu−λ̂u,bu

σ̂u,bu/
√
n

∣∣∣ = OP (1).

By similar argument in (71), there is κ̄2 such that

lim inf
n

Pn (Cn(κ̄2)) ≥ 1− ε

6
, where (73)

Cn(κ̄2) =

{
T̂ (θ) > z̄ for all θ ≤ θℓ −

κ̄2√
n

}
, (74)

z̄ is defined in Lemma 6 with M̄ given above (72).

In sum, let κ̄ = max {κ̄1, κ̄2, 0},

Dn =
{
T̂ (θn) > ĉm(θn, α

c) for all θ ≤ θℓ − κ̄/
√
n
}
,

we have

lim inf
n

Pn (Dn)

≥ lim inf
n

Pn (An(κ̄) ∩Bn ∩ Cn(κ̄) ∩Dn)

= lim inf
n

Pn (An(κ̄) ∩Bn ∩ Cn(κ̄))

≥ lim inf
n

Pn (An(κ̄)) + Pn (Bn) + Pn (Cn(κ̄))− 2 ≥ 1− ε

2
.

where the equality follows from Lemma 5: the three assumptions in Lemma 5 hold

because (i) κ̄ ≥ 0, (ii) An(κ̄), (iii) Bn ∩ Cn(κ̄). The last inequality follows from

(71), (72) and (73), and thus (70) holds.

3



Lemma 3. Under Assumptions 1, 2, 3, 4, 5, to prove that

lim sup
n→∞

sup
P∈P

sup
θ∈[θP,ℓ,θP,u]

P
(
θ ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
≤ α,

it suffices to show that we have

lim sup
n→∞

max {Pn (Eℓ ∪ {Em ∩ Eu}) , Pn (Eu ∪ {Em ∩ Eℓ})} ≤ α− η, (75)

for all sequence {Pn} ∈ P∞ = ×∞
n=1Pn with

Ek =
{
T̂ (θk) > c̃m(θk, ĉ

t
Pn
)
}
, ĉtPn

= inf
c

{
c ≥ 0 : p̄

(
c, λPn , Σ̂n/n

)
+ η ≤ α

}
,

(76)

and Pn satisfying

1. The convergence of Ω,

Ω(Pn) → Ω0 ∈ S; (77)

2. The convergence of

(λn,kℓ, λn,ku) =

((
λPn,ℓ,b − θk
σPn,ℓ,b/

√
n

)
b∈B

,

(
θk − λPn,u,b

σPn,u,b/
√
n

)
b∈B

)
→ (λkℓ, λku), (78)

with λℓℓ ∈ Λ0, λuu ∈ Λ0, λℓu, λmu, λmℓ, λuℓ ∈ Λ−,

Λ0 =

{
λ ∈ [0,+∞]|B| : min

b∈B
λb = 0

}
Λ− =

{
λ ∈ [−∞,+∞]|B| : min

b∈B
λb ≤ 0

}
.

Recall that c̃m(θ, c;α) is defined in (26) and p̄
(
c, λPn , Σ̂n/n

)
is defined in (29).

Here I omit Pn in θPn,k and α in c̃m(θℓ, ĉ
t
Pn
;α) to simplify notation.

Proof. There is always a subsequence {na}, {Pna , θna} such that

lim sup
n→∞

sup
P∈P

sup
θ∈[θP,ℓ,θP,u]

P
(
θ ̸∈ CIm(λ̂n, Σ̂n/n;α)

)
= lim

na

Pna

(
θna ̸∈ CIm(λ̂na , Σ̂na/na;α)

)
.

Since S defined in Assumption 3 is compact (e.g. in the Frobenius norm), and

Assumption 3 implies that Ω(Pna) ∈ S for all na, there exists a further subsequence

4



{nr} ⊆ {na} such that

lim
r→∞

Ω (Pnr) → Ω0 ∈ S.

Also, note that the set [−∞,+∞]|B| is compact under metric d(λ, λ̃) =
∥∥∥Φ(λ)− Φ(λ̃)

∥∥∥
for Φ(·) the standard normal CDF applied elementwise, and ∥·∥ the Euclidean

norm. Therefore, there is a further subsequence {ns} ⊆ {nr} along which (78)

holds. We have found a subsequence ns such that (77) and (78) hold. Therefore,

lim sup
n→∞

sup
P∈P

sup
θ∈[θℓ,θu]

P
(
θ ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
= lim

ns

Pns

(
θns ̸∈ CIm

(
λ̂ns , Σ̂ns/ns;α

))
.

With slight abuse of notation, in the following equations I use n for subsequence

ns:

Pn

(
θn ̸∈ CIm

(
λ̂n, Σ̂n/n;α

))
≤Pn

(
θn ̸∈ CIm

(
λ̂n, Σ̂n/n;α

)
, λPn ∈ Λ̂n

)
+ Pn

(
λPn ̸∈ Λ̂n

)
≤max

{
Pn

(
[θℓ, θm] ̸⊆ CIm

(
λ̂n, Σ̂n/n;α

)
, λPn ∈ Λ̂n

)
,

Pn

(
[θm, θu] ̸⊆ CIm

(
λ̂n, Σ̂n/n;α

)
, λPn ∈ Λ̂n

)}
+ Pns

(
λPn ̸∈ Λ̂n

)
≤max

{
Pn

(
T̂ (θℓ) > ĉm(θℓ;α) or

{
T̂ (θm) > ĉm(θm;α) and T̂ (θu) > ĉm(θu;α)

}
, λPn ∈ Λ̂n

)
,

Pn

(
T̂ (θu) > ĉm(θu;α) or

{
T̂ (θm) > ĉm(θm;α) and T̂ (θℓ) > ĉm(θℓ;α)

}
, λPn ∈ Λ̂n

)}
+ η + o(1)

≤max {Pn (Eℓ ∪ {Em ∩ Eu}) , Pn (Eu ∪ {Em ∩ Eℓ})}+ η + o(1).

Recall that ĉt is defined in (30) and ĉtPn
is defined in (76), thus the last inequality

follows from the fact that ĉtPn
≤ ĉt if λPn ∈ Λ̂n. Therefore it suffices to show

(75).

Lemma 4. Under Assumptions 1, 2, 3, 4, 5, sequences (77) and (78), if

min
b∈B

λℓu,b ∈ R, (79)

it holds that (
T̂ (θPn,k), ĉ

c(θPn,k, α
c)
)
k=ℓ,m,u

d−→ (Tk, c
c
k)k=ℓ,m,u . (80)

5



If

min
b∈B

λℓu,b = −∞, (81)

it holds that (
T̂ (θPn,k), ĉ

c(θPn,k, α
c)
)
k=ℓ,u

d−→ (Tk, c
c
k)k=ℓ,u , (82)

and for all c ∈ R
Pn

(
T̂ (θPn,m) ≥ c

)
→ 0. (83)

Proof. Note that

lim
n

√
n (λPn,ℓ,bℓ − λPn,u,bu) = lim

n
min
b∈B

σPn,u,b
θPn,ℓ − λPn,u,b

σPn,u,b/
√
n

= min
b∈B

σ0,u,bλℓu,b. (84)

Thus the two cases in (79) and (81) correspond to whether the length of the

identified set of θ is large asymptotically. I will show (80) under (79) in Step 1

and 2, then show (82) and (83) under (81) in Step 3.

Step 1. Show that under (79),(
b̂ℓ(θPn,k), b̂u(θPn,k), T̂ (θPn,k),Φ

(
t̂ℓ(θPn,k,Bkℓ)

)
,Φ
(
t̂u(θPn,k,Bku)

))
k=ℓ,m,u

d−→ (bkℓ, bku, Tk,Φ (tkℓ(Bkℓ)) ,Φ (tku(Bku)))k=ℓ,m,u

where t̂ℓ, t̂u is tℓ, tu in Lemma 1 with Σn replaced with Σ̂n/n,

tkk′(Bkk′) = (tkk′,1(b), tkk′,2(b))b∈Bkk′

t̂k′(θPn,k,Bkk′) =
(
t̂k′,1(θPn,k, b), t̂k′,2(θPn,k, b)

)
b∈Bkk′

, k ∈ {ℓ, u,m}, k′ ∈ {ℓ, u}.

tkk′ is defined in (41) and Bkℓ, Bkl are defined in (40).

Step 1.1. Note that

T̂ (θPn,k) = max

{
min
b∈B

λ̂ℓ,b − θPn,k

σ̂ℓ,b/
√
n

, min
b∈B

θPn,k − λ̂u,b
σ̂u,b/

√
n

}

= max

{
min
b∈Bℓ

λ̂ℓ,b − λPn,ℓ,b

σ̂ℓ,b/
√
n

+
σPn,ℓ,b

σ̂ℓ,b
λn,kℓ,b, min

b∈Bu

λPn,u,b − λ̂u,b
σ̂u,b/

√
n

+
σPn,u,b

σ̂u,b
λn,ku,b

}
w.p.a. 1
= max

{
min
b∈Bkℓ

λ̂ℓ,b − λPn,ℓ,b

σ̂ℓ,b/
√
n

+
σPn,ℓ,b

σ̂ℓ,b
λn,kℓ,b, min

b∈Bku

λPn,u,b − λ̂u,b
σ̂u,b/

√
n

+
σPn,u,b

σ̂u,b
λn,ku,b

}

6



d−→ max

{
min
b∈Bkℓ

Zℓ,b + λkℓ,b, min
b∈Bku

Zu,b + λku,b

}
. (85)

The first line is by definition, the second line simply rearranges terms with λn,kℓ,b,

λn,ku,b defined in (78). To see the third line, note that by Assumption 1, 2, 3, 4,

we have((
λ̂ℓ,b − λPn,ℓ,b

σ̂ℓ,b/
√
n

)
b∈B

,

(
λPn,u,b − λ̂u,b
σ̂u,b/

√
n

)
b∈B

,

(
σPn,ℓ,b

σ̂ℓ,b

)
b∈B

,

(
σPn,u,b

σ̂u,b

)
b∈B

)
(86)

d−→
(
Zℓ, Zu,12|B|

)
.

In addition, for b ∈ Bℓ\Bkℓ, λkℓ,b = ∞, thus with probability going to one,

min
b̃∈B

λ̂ℓ,b̃ − θPn,k

σ̂ℓ,b̃/
√
n

≤ λ̂ℓ,bℓ − θPn,k

σ̂ℓ,bℓ/
√
n

≤ λ̂ℓ,bℓ − λPn,ℓ,bℓ

σ̂ℓ,bℓ/
√
n

<
λ̂ℓ,b − λPn,ℓ,b

σ̂ℓ,b/
√
n

+
σPn,ℓ,b

σ̂ℓ,b
λn,kℓ,b,

λn,kℓ,b is defined in (78). Thus asymptotically, we can ignore Bℓ\Bkℓ. With the

same argument, we can replace Bu with Bku in the second part. The fourth line

follows from (i) (86), (ii) Slustsky’s Lemma and (iii) the limit distribution is well

defined because

λkℓ,b = lim
n

λPn,ℓ,b − θPn,k

σPn,ℓ,b/
√
n

≥ lim
n

λPn,ℓ,bℓ − λPn,u,bu

σPn,ℓ,b/
√
n

=
minb∈B σ0,u,bλℓu,b

σ0,ℓ,b
∈ R, (87)

λku,b = lim
n

θPn,k − λPn,u,b

σPn,u,b/
√
n

≥ lim
n

λPn,ℓ,bℓ − λPn,u,bu

σPn,u,b/
√
n

=
minb∈B σ0,u,bλℓu,b

σ0,u,b
∈ R.

Step 1.2. As for Φ
(
t̂ℓ,1(θk,Bkℓ)

)
, let b ∈ Bkℓ. If min

b̃∈B
ρℓu(b, b̃) = −1, then

Φ (tkℓ,1(b)) = 0 by construction in (41). Note that min
b∈B

ρℓu(b, b̃) = −1 implies

Aℓ,b = −aAu,b̃ for some a > 0, thus min
b∈B

ρ̂ℓu(b, b̃) = −1 for all samples, thus with

probability one, Φ
(
t̂ℓ,1(θk, b

)
= 0, and the convergence is trivial. Then consider

min
b̃∈B

ρℓu(b, b̃) > −1. By (87) and the definition of Bkℓ, we have λkℓ,b ∈ R, and thus

Φ (tℓ,1(θk, b))

=min
b̃∈B

Φ

((
1 + ρ̂ℓu(b, b̃)

)−1
(
Ẑu,b̃ +

σu,b̃
σ̂u,b̃

λPn,ku,b̃
+ ρ̂ℓu(b, b̃)

(
Ẑℓ,b +

σℓ,b
σ̂ℓ,b

λPn,kℓ,b

)))
d−→min

b̃∈B
Φ

((
1 + ρℓu(b, b̃)

)−1 (
Zu,b̃ + λku,b̃ + ρℓu(b, b̃) (Zℓ,b + λkℓ,b)

))

7



= Φ(tkℓ,1(b)) .

Thus

Φ (tℓ,1(θk,Bkℓ))
d−→ Φ (tkℓ,1(Bkℓ)) . (88)

This argument also applies to Φ (tℓ,2(θk,Bkℓ)), Φ (tu,1(θk,Bku)), Φ (tu,2(θk,Bku)).

Step 1.3. Let

g (X, Y ) = 1 [X ≤ Y ] .

For b1, b2 ∈ Bkℓ, b1 ̸= b2,

P (Zℓ,b1 + λkℓ,b1 = Zℓ,b2 + λkℓ,b2) = P ((Aℓ,b1 − Aℓ,b2)Zδ = λkℓ,b2 − λkℓ,b1) = 0,

following from Aℓ,b1 ̸= Aℓ,b2 , Zδ ∼ N (0,Ω0), Ω0 non-singular and λkℓ,b2 , λkℓ,b1 ∈ R.
Thus

g (Zℓ,b1 + λkℓ,b1 , Zℓ,b2 + λkℓ,b2)

is almost sure continuous. Thus by continuous mapping theorem, it holds that

g (Zℓ,b1 ,Zℓ,b2)
d−→ g (Zℓ,b1 + λkℓ,b1 , Zℓ,b2 + λkℓ,b2) . (89)

Similarly, we have

g (Zu,b2 ,Zℓ,b1)
d−→ g (Zu,b2 + λku,b2 , Zℓ,b1 + λkℓ,b1) . (90)

Then consider b1 ∈ Bkℓ and b2 ∈ Bku. (i) If Aℓ,b1 ̸= Au,b2 , similar argument holds,

g (Zℓ,b1 ,Zu,b2)
d−→ g (Zℓ,b1 + λkℓ,b1 , Zu,b2 + λku,b2) ; (91)

(ii) if Aℓ,b1 = Au,b2 , then

g (Zℓ,b1 ,Zu,b2) = g (Zℓ,b1 + λkℓ,b1 , Zu,b2 + λku,b2) = 1

for all samples, thus the convergence holds trivially. The convergence in (85), (88),

(89), (90), (91) holds jointly.

Step 2. Then I show the convergence of Φ (ĉc(θk, α)).

Φ (ĉc(θk, α))
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=
(
(1− α)Φ

(
tℓ,2(θk, b̂ℓ)

)
+ αΦ

(
tℓ,1(θk, b̂ℓ)

))
1
[
Zℓ,b̂ℓ

≥ Zu,b̂u

]
+
(
(1− α)Φ

(
tu,2(θk, b̂u)

)
+ αΦ

(
tu,1(θk, b̂u)

))
1
[
Zℓ,b̂ℓ

< Zu,b̂u

]
=
∑

b1∈Bkℓ

∑
b2∈Bku

1
[
Zℓ,b1 ≥ Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
×

((1− α)Φ (tℓ,2(θk, b1)) + αΦ (tℓ,1(θk, b1)))

+
∑

b1∈Bkℓ

∑
b2∈Bku

1
[
Zℓ,b1 < Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
×

((1− α)Φ (tu,2(θk, b2)) + αΦ (tu,1(θk, b2))) w.p.a. 1

In addition,

1
[
Zℓ,b1 ≥ Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
=g (Zu,b2 ,Zℓ,b1)

∏
b̃1∈Bkℓ\b1

g
(
Zℓ,b1 ,Zℓ,b̃1

) ∏
b̃2∈Bku\b2

g
(
Zu,b2 ,Zu,b̃2

)
1
[
Zℓ,b1 < Zu,b2 ,Zℓ,b1 ≤ Zℓ,Bkℓ\b1 ,Zu,b2 ≤ Zu,Bku\b2

]
= [1− g (Zu,b2 ,Zℓ,b1)]

∏
b̃1∈Bkℓ\b1

g
(
Zℓ,b1 ,Zℓ,b̃1

) ∏
b̃2∈Bku\b2

g
(
Zu,b2 ,Zu,b̃2

)
Since all function are almost sure continuous as discussed before, we have

Φ (ĉc(θk, α))
d−→ Φ (cck(α))

following from (88), (89), (90), (91).

Step 3. Now assume (81) holds. We can show that(
b̂ℓ(θPn,k), b̂u(θPn,k), T̂ (θPn,k),Φ

(
t̂ℓ(θPn,k,Bkℓ)

)
,Φ
(
t̂u(θPn,k,Bku)

))
k=ℓ,u

d−→ (bkℓ, bku, Tk,Φ (tkℓ(Bkℓ)) ,Φ (tku(Bku)))k=ℓ,u

with similar argument as Step 1 and 2. Regarding (83), note that

T̂ (θm) = max

{
min
b∈B

λ̂ℓ,b − θm
σ̂ℓ,b/

√
n
, min

b∈B

θm − λ̂u,b
σ̂u,b/

√
n

}

≤ max

{
λ̂ℓ,bℓ − θm
σ̂ℓ,bℓ/

√
n
,
θm − λ̂u,bu
σ̂u,bu/

√
n

}

9



= max

{
λ̂ℓ,bℓ − λℓ,bℓ
σ̂ℓ,bℓ/

√
n

+
σℓ,bℓ
σ̂ℓ,bℓ

λℓ,bℓ − θm
σℓ,bℓ/

√
n
,
λu,bu − λ̂u,bu
σ̂u,b/

√
n

+
σu,bu
σ̂u,bu

θm − λu,b
σu,bu/

√
n

}
.

By (81), (84) and θm = (θℓ + θu)/2,

lim
n

λℓ,bℓ − θm
σℓ,bℓ/

√
n

= −∞, lim
n

θm − λu,b
σu,bu/

√
n
= −∞.

Thus it is easy to see (83) holds.

Lemma 5. Assume that (i) θ ≤ θℓ; (ii) η ∈ [0, α/4),

T̂ (θ) = Zℓ,b̂ℓ
> Φ−1(1− α− η

2
); (92)

(iii) either

min
b̃∈B

ρ̂ℓu(b̂ℓ, b̃) = −1,

or (
1 + ρ̂ℓu(b̂ℓ, bu)

)−1 λu,bu − λ̂u,bu
σ̂u,bu/

√
n

≤ M̄, (93)

T̂ (θ) > z̄, (94)

where M̄ ∈ R, z̄ is defined in Lemma 6 with M̄ given in (93). Then

T̂ (θ) > ĉm(θ, αc). (95)

Proof. Note that ĉt ≤ Φ−1(1 − α−η
2
) by construction, thus under (92), T̂ (θ) > ĉt

and (95) is equivalent to

T̂ (θ) > ĉc(θ, αc). (96)

If minb̃∈B ρ̂ℓu(b̂ℓ, b̃) = −1, then

ĉc(θ, αc) = Φ−1
(
(1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

))
≤ Φ−1 (1− αc) < Φ−1(1− α

2
).

In this case, (96) holds trivially. If minb̃∈B ρℓu(b̂ℓ, b̃) > −1, we have

tℓ,1(θ, b̂ℓ) = min
b̃∈B

(
1 + ρ̂ℓu(b̂ℓ, b̃)

)−1 (
Zu,b̃ + ρ̂ℓu(b̂ℓ, b̃)Zℓ,b̂ℓ

)
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≤
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1
(
θ − λ̂u,bu
σ̂u,bu/

√
n
+ ρ̂ℓu(b̂ℓ, bu)Zℓ,b̂ℓ

)

≤
(
1 + ρ̂ℓu(b̂ℓ, bu)

)−1
(
λu,bu − λ̂u,bu
σ̂u,bu/

√
n

+ ρ̂ℓu(b̂ℓ, bu)Zℓ,b̂ℓ

)
≤ M̄ +

1

2
Zℓ,b̂ℓ

,

where the second inequality uses θ ≤ θℓ ≤ λu,bu by (i). Then

Φ
(
T̂ (θ)

)
− Φ (ĉc(θ, αc))

=Φ
(
T̂ (θ)

)
− αcΦ

(
tℓ,1(θ, b̂ℓ)

)
− (1− αc)Φ

(
tℓ,2(θ, b̂ℓ)

)
≥Φ

(
Zℓ,b̂ℓ

)
− αcΦ

(
M̄ +

1

2
Zℓ,b̂ℓ

)
− (1− αc)

=H
(
Zℓ,b̂ℓ

, M̄
)
> 0,

with H(z, M̄) defined in Lemma 6. H(Zℓ,b̂ℓ
, M̄) > 0 follows from (94) and Lemma

6.

Lemma 6. Let

H(z, M̄) = Φ(z)− αcΦ

(
M̄ +

1

2
z

)
− (1− αc).

For all M̄ ∈ R, there is some z̄M ∈ R such that H(z, M̄) > 0 for all z ≥ z̄M .

Proof. Note that

dH(z, M̄)

dz
= ϕ(z)

(
1− α

2
exp

(
3

8
z2 − M̄

2
z − M̄2

2

))
,

and thus there is z̄M ∈ R such that dH(z,M̄)
dz

< 0 for all z ≥ z̄M . Also note that

lim
z→∞

H(z, M̄) = 0.

Therefore, for all z ≥ z̄M , we have H(z, M̄) > 0.

Lemma 7. Let α ∈ (0, 1
2
), αc ∈ (α

2
, α), η ∈

[
0, α

4

)
. Recall that csim = Φ−1(1− α

2
).

11



Let

H (c,∆, ρ) = Φ2 (−c,∆− c; ρ) + Φ

(
−∆

2
− c

)
, (97)

ρ∗2(α, η) = sup
ρ∈(−1,1)

{
ρ : sup

∆≥0
H
(
csim,∆, ρ

)
≤ α− η

}
. (98)

For all ξ > 0, there is c̄ < csim such that

sup
ρ≤ρ∗2(α,η)−ξ

sup
∆≥0

H (c̄,∆, ρ) < α− η. (99)

Proof. First, we can check numerically that for α ∈ (0, 1
2
),

sup
∆≥0

H
(
csim,∆, 0

)
= sup

∆≥0

α

2
Φ
(
∆− csim

)
+ Φ

(
−∆

2
− csim

)
<

3

4
α < α− η

and thus ρ∗2(α, η) is well defined.

Second, I show that for all c ∈ (0, csim], it holds that for all |ρ| < 1,

sup
∆≥0

H (c,∆, ρ) = sup
∆∈[0,∆̄]

H (c,∆, ρ) (100)

where ∆̄ = 2csim+
√
4(csim)2 + 8/3 log(2). The first order derivative gives that for

all ∆ > ∆̄,

dH (c,∆, ρ)

d∆
= ϕ(∆− c)

[
Φ

(
(ρ− 1)c− ρ∆√

1− ρ2

)
− 1

2
exp

(
3

8
∆(∆− 4c)

)]

≤ ϕ(∆− c)

[
1− 1

2
exp

(
3

8
∆(∆− 4csim)

)]
≤ 0.

Therefore, (100) holds for all c ∈ (0, csim].

Third, let ρ̄ = ρ∗2(α, η)− ξ, and by construction,

α− η ≥ sup
∆∈[0,∆̄]

H
(
csim,∆, ρ∗2(α, η)

)
= sup

∆∈[0,∆̄]

H
(
csim,∆, ρ̄

)
+

dH
(
csim,∆, ρ̃(∆)

)
dρ

ξ

≥ sup
∆∈[0,∆̄]

H
(
csim,∆, ρ̄

)
+ aξ (101)

12



where

a = inf
∆ ∈ [0, ∆̄]

ρ̃ ∈ [ρ̄, ρ∗2(α, η)]

dH
(
csim,∆, ρ̃

)
dρ

= inf
∆ ∈ [0, ∆̄]

ρ̃ ∈ [ρ̄, ρ∗2(α, η)]

ϕ
(
−csim,∆− csim; ρ̃

)
> 0.

Rewrite (101) we get

sup
∆∈[0,∆̄]

H
(
csim,∆, ρ̄

)
≤ α− η − aξ.

Lastly,

dH (c,∆, ρ)

dc
= −ϕ(∆−c)Φ

(
(ρ− 1)c−∆ρ√

1− ρ2

)
−ϕ(−c)Φ

(
cρ− c+∆√

1− ρ2

)
−ϕ
(
−∆

2
−c
)
.

Let

b = − inf
ρ∈[0,ρ∗2(α,η)],c∈[0,csim],∆∈[0,∆̄]

dH (c,∆, ρ)

dc
> 0.

Choose c̄ = csim − aξ
2b
, and then for all ρ ≤ ρ∗2(α, η)− ξ,

sup
∆∈[0,∆̄]

H
(
csim,∆, ρ

)
= sup

∆∈[0,∆̄]

H (c̄,∆, ρ) +
dH (c̃(∆),∆, ρ)

dc
(csim − c̄)

≥ sup
∆∈[0,∆̄]

H (c̄,∆, ρ)− b(csim − c̄). (102)

In sum, for all ρ ≤ ρ∗2(α, η)− ξ, by (100), (101), (102),

sup
∆≥0

H (c̄,∆, ρ) = sup
∆∈[0,∆̄]

H (c̄,∆, ρ) ≤ α− η − aξ + b
aξ

2b
< α− η.

Lemma 8. Suppose Assumptions 1, 2, 3, 4, and 5 hold. Let α ∈ (0, 1
2
), αc ∈

(α
2
, α), η ∈

[
0, α−αc

2

)
. Assume that Aℓ = Au, and P satisfies that

sup
P∈P

ρℓ(bℓ, bu) < ρ∗2(α, η), (103)

where ρ∗2(α, η) is defined in Lemma 7 equation (98). Then there is α′ > α such

13



that

lim inf
n

inf
P∈P

P

(
ĉt ≤ Φ−1(1− α′

2
)

)
= 1. (104)

Proof. Let

ξ =
1

2

(
ρ∗2(α, η)− sup

P∈P
ρℓ(bℓ, bu)

)
> 0,

and it is easy to see that η < α−αc

2
< α

4
. Therefore, by Lemma 7, there is

c̄ < Φ−1(1− α
2
) such that (99) holds. To show (104), note that

lim inf
n

inf
P∈P

P
(
ĉt ≤ c̄

)
≥ lim inf

n
inf
P∈P

P

(
sup
λ∈Λ̂

p̄(c̄, λ, Σ̂n/n) ≤ α− η

)

≥ lim inf
n

inf
P∈P

P

(
sup
λ∈Λ

p̄(c̄, λ, Σ̂n/n) ≤ α− η

)
Recall that

p̄(c̄, λ, Σ̂n/n)

=max
{
P
(
T̂ (θℓ) > c̃m(θℓ, c̄) ∨

{
T̂ (θm) > c̃m(θm, c̄) ∧ T̂ (θu) > c̃m(θu, c̄)

}
; N (λ, Σ̂n/n)

)
P
(
T̂ (θu) > c̃m(θu, c̄) ∨

{
T̂ (θm) > c̃m(θm, c̄) ∧ T̂ (θℓ) > c̃m(θℓ, c̄)

}
; N (λ, Σ̂n/n)

)}
≤max

{
P
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄; N (λ, Σ̂n/n)

)
,

P
(
T̂ (θm) > c̄ or T̂ (θu) > c̄; N (λ, Σ̂n/n)

)}
.

Thus it suffices to show that

sup
λ∈Λ

P
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄; N (λ, Σ̂n/n)

)
≤ α− η w.p.a. 1, (105)

The proof for the upper bound is similar. To see (105),

P
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄; N (λ, Σ̂n/n)

)
≤P

(
max

{
min
b∈B

λ̂b − θℓ
σ̂b/

√
n
, min

b∈B

θm − λ̂b
σ̂b/

√
n

}
> c̄; N (λ, Σ̂n/n)

)

≤P

(
min

{
λ̂bℓ − θℓ
σ̂bℓ/

√
n
,
λ̂bu − θℓ
σ̂bu/

√
n

}
> c̄, or

θm − λ̂bu
σ̂bu/

√
n
> c̄; N (λ, Σ̂n/n)

)

=P

(
min

{
Zbℓ ,Zbu +

θu − θℓ
σ̂bu/

√
n

}
> c̄, or

θm − θu
σ̂bu/

√
n
− Zbu > c̄

)
14



≤P
(
Zbℓ > c̄, Zbu +

θu − θℓ
σ̂bu/

√
n
> c̄;

)
+ P

(
θm − θu
σ̂bu/

√
n
− Zbu > c̄

)
=Φ

(
−c̄, θu − θℓ

σ̂bu/
√
n
− c̄; ρ̂ℓu(bℓ, bu)

)
+ Φ

(
θm − θu
σ̂bu/

√
n
− c̄

)
≤Φ (−c̄,∆− c̄; ρ̂ℓu(bℓ, bu)) + Φ

(
−∆

2
− c̄

)
=H (c̄,∆, ρ̂ℓ(bℓ, bu)) (106)

where (Zbu ,Zbℓ) ∼ N (0, [1, ρ̂ℓ(bℓ, bu)); ρ̂ℓ(bℓ, bu)), 1], ∆ = θu−θℓ
σ̂bu/

√
n
≥ 0, andH(c,∆, ρ)

is in (97).

Under (103) and Assumptions 1, 2, 3, 4, and 5, it holds that

ρ̂ℓ(bℓ, bu) ≤ ρ∗2(α, η)− ξ w.p.a. 1.

Thus (106) gives that w.p.a. 1,

P
(
T̂ (θℓ) > c̄ or T̂ (θm) > c̄;N (λ, Σ̂)

)
≤ H (c̄,∆, ρ̂ℓ(bℓ, bu))

≤ sup
ρ≤ρ∗2(α,η)−ξ

sup
∆≥0

H (c̄,∆, ρ) < α− η

where the last inequality follows from the construction of c̄.

Lemma 9. p(c) in (43) is continuous at c ≥ 0.

Proof. For ε > 0, let

pk(c, ε) =P (cmk (c) ≥ Tk > cmk (c− ε)) ≤ P (c− ε < Tk ≤ c) .

Then

lim
ε→0

pk(c, ε) = 0

for all c ≥ 0 since (i) under (79) and k = ℓ,m, u, or under (81) and k = ℓ, u, Tk is

continuously distributed, (ii) under (81) and k = m,

P (c− ε < Tk ≤ c) ≤ P (c− ε < Tk) = 0.

But then with Ek(c) = {P (Tk > cmk (c))},

p(c− ε)− p(c)
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≤ max {P (Eℓ(c− ε) or {Em(c− ε) and Eu(c− ε)})− P (Eℓ(c) or {Em(c) and Eu(c)}) ,

P (Eu(c− ε) or {Em(c− ε) and Eℓ(c− ε)})− P (Eu(c) or {Em(c) and Eℓ(c)})}

≤ pℓ(c, ε) + pm(c, ε) + pu(c, ε)
ε → 0−−−→ 0.

Thus p(c) is continuous at c ≥ 0.

Lemma 10. Let

H(ρ, αc) = (1− αc)Φ ((1 + ρ)Ξ) + αcΦ ((ρ− 1)Ξ) , (107)

Ξ =

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
. (108)

It holds that

1. for all α ∈ (0, 1
2
), αc ∈ (α

2
, α), there is a unique solution ρ∗1(α, α

c) ∈ (0, 1)

such that

H (ρ∗1(α, α
c), αc) = 1− α

2
. (109)

2. Let ξ > 0. There is ε > 0 such that for all ρ ∈ [0, ρ∗1(α, α
c)− ξ],

H (ρ, αc) ≤ 1− α

2
− ε. (110)

Proof. Straightforward calculation gives that for all ρ ∈ (0, 1),

dH(ρ, αc)

dρ
=

αc

√
πρ(ρ+ 1)

(
(1− αc)(ρ+ 1)

αc(1− ρ)

)− (1−ρ)2

4ρ

√
log

(
(1− αc)(ρ+ 1)

αc(1− ρ)

)
> 0.

In addition, note that

lim
ρ→1

Ξ = lim
ρ→1

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
= +∞,

lim
ρ→1

(ρ− 1)Ξ = lim
ρ→1

(ρ− 1)

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
= lim

ρ→1
−

√
(1− ρ)2

2ρ
log

(
1

1− ρ

)
= 0,

lim
ρ→0

Ξ = lim
ρ→0

√
1

2ρ
log

(
(1− αc)(1 + ρ)

αc(1− ρ)

)
= +∞,
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thus

lim
ρ→1

H(ρ, αc) = (1− αc) +
1

2
αc = 1− αc

2
> 1− α

2
,

lim
ρ→0

H(ρ, αc) = (1− αc) = 1− αc < 1− α

2
,

where the inequality follows from αc ∈ (α
2
, α). Since H(ρ, αc) is strictly increasing

in ρ ∈ (0, 1), there is a unique solution ρ∗ ∈ (0, 1) that H(ρ∗, αc) = 1− α
2
.

(110) holds trivially with ε = 1− α
2
−H(ρ∗1(α, α

c)− ξ, αc).

Lemma 11. Suppose Assumptions 1, 2, 3, 4, and 5 hold. If Al = Au and

sup
P∈P

max
b1∈B

min
b2∈B

ρℓ(b1, b2) < ρ∗1(α, α
c), (111)

where ρ∗1(α, α
c) is defined in Lemma 10, then there is α′ > α such that

lim inf
n

inf
P∈P

P
(
T̂ (θ) > ĉc(θ;αc) for all θ ̸∈ CIsim(λ̂n, Σ̂n/n, α

′)
)
= 1. (112)

Proof. Let

ξ =
1

2
min

{
ρ∗1(α, α

c)− sup
P∈P

max
b1∈B

min
b2∈B

ρℓ(b1, b2), ρ
∗
1(α, α

c)

}
> 0. (113)

By Lemma 10, there is ε > 0 such that H(ρ, αc) ≤ 1− α
2
−ε, with H(ρ, αc) defined

in (107), for all ρ ∈ [0, ρ∗1(α, α
c)−ξ]. Next, I show (112) for α′ = min{αc+ α

2
, α+ε}.

Consider θ ̸∈ CIsim(λ̂n, Σ̂n/n, α
′). Denote

Zb =
λ̂ℓ,b − θ

σ̂ℓ,b/
√
n
, Zℓ,b = −Zb, Zu,b = Zb.

Without loss of generality, assume that

T̂ (θ) = Z1 and ρ̂12 = ρ̂ℓ(1, 2) ≤ ρ∗1(α, α
c)− ξ.

The inequality happens with probability approaching one. In this case

tu,1 = min
b̃∈B

(
1 + ρ̂ℓ(1, b̃)

)−1 (
Zℓ,b̃ + ρ̂ℓ(1, b̃)Zu,1

)
≤ ρ̂12Z1 −Z2

1 + ρ̂12

tu,2 = min
b̃∈B:ρ̂u(1,b̃)<1

(
1− ρ̂ℓ(1, b̃)

)−1 (
Zu,b̃ − ρ̂ℓ(1, b̃)Zu,1

)
≤ Z2 − ρ̂12Z1

1− ρ̂12
.
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θ is rejected if

Φ(Z1) > Φ(ĉc) = (1− αc)Φ (tu,2) + αcΦ (tu,1) .

By construction, Z2 ≥ Z1, thus it suffices to show that

Φ(Z1) > sup
z2≥Z1

G(z2) where (114)

G(z2) = (1− αc)Φ

(
z2 − ρ̂12Z1

1− ρ̂12

)
+ αcΦ

(
ρ̂12Z1 − z2
1 + ρ̂12

)
. (115)

The first order derivative of G(z2) with respect to z2 is

g(z2) =
1− αc

1− ρ̂12
ϕ

(
z2 − ρ̂12Z1

1− ρ̂12

)
− αc

1 + ρ̂12
ϕ

(
ρ̂12Z1 − z2
1 + ρ̂12

)
.

g(z2) ≥ 0 is equivalent to

log

(
1− αc

αc

1 + ρ̂12
1− ρ̂12

)
≥ 2ρ̂12 (z2 −Z1ρ̂12)

2

(1− ρ̂212)
2 . (116)

(i) If 2αc − 1 < ρ̂12 ≤ 0, then (116) holds trivially, and thus

sup
z2≥Z1

G(z2) = lim
z2→∞

G(z2) = 1− αc < Φ (Z1) ,

and (114) holds. The inequality follows from 1− α′

2
> 1− αc.

(ii) If −1 ≤ ρ̂12 < 2αc − 1, straightforward calculation shows that G(z2) de-

creases in [max {Z1, z
∗
2} , z∗2 ] and increases in [z∗2 ,+∞), where

z∗2 = ρ̂12Z1 + (1− ρ̂212)
√
Ξ.

and Ξ is defined in (108). Thus

sup
z2≥Z1

G(z2) ≤ max

{
G(Z1), lim

z2→∞
G(z2)

}
< Φ (Z1) .

(iii) If ρ̂12 ∈
(
0, ρ∗(α, αc)− ξ

2

)
, straightforward calculation shows that G(z2)
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increases in [max {Z1, z
∗
2} , z∗2 ] and decreases in [z∗2 ,+∞), thus

sup
z2≥Z1

G(z2) ≤ G(z∗2) = (1− αc)Φ ((1 + ρ)Ξ) + αcΦ ((ρ− 1)Ξ) < Φ (Z1)

The last inequality is by Lemma 10.

Lemma 12. Suppose Assumptions 1, 2, 3, 4 hold, and Pn satisfies (35). Λ̂η is

defined as in (32). Let α ∈ (0, 1
2
), αc ∈ (α

2
, α), η ∈ [0, α−αc

2
). Then there exists

α′ > α such that

lim inf
n

inf
P∈Pn

P

(
ĉt ≤ Φ−1(1− α′

2
)

)
= 1.

Proof. Consider Pn ∈ Pn satisfying (78) and (77). I show that there is ξ > 0 such

that

sup
λ∈Λ̂η

p̄(csim, λ, Σ̂n/n) ≤ α− η − ξ w.p.a. 1. (117)

Then since supλ∈Λ̂η
p̄(c, λ, Σ̂n/n) is continuous in c, there is c′ < csim such that

sup
λ∈Λ̂η

p̄(c′, λ, Σ̂n/n) ≤ α

and the conclusion holds with α′ = 2 (1− Φ(c′)). To show (117), I consider two

cases.

Case 1: η = 0 and thus Λ̂η = Λ. By definition,

p̄(c, λ,Σ) ≤ max
{
P
(
T̂ (θℓ) > c̃m(θℓ, c) or T̂ (θm) > c̃m(θm, c);N (λ,Σ)

)
,

P
(
T̂ (θu) > c̃m(θu, c) or T̂ (θm) > c̃m(θm, c);N (λ,Σ)

)}
. (118)

Therefore, it suffices to show that there is ξ > 0 such that

sup
λ∈Λ

P
(
T̂ (θℓ) > c̃m(θℓ, c

sim) or T̂ (θm) > c̃m(θm, c
sim);N (λ, Σ̂n/n)

)
≤ α− ξ

and same argument applies to (118). To do so, let

¯̄p(∆; csim) = sup
(λ,Σ)∈D(∆)

P
(
T̂ (θℓ) > c̃m(θℓ, c

sim) or T̂ (θm) > c̃m(θm, c
sim);N (λ,Σ)

)
D(∆) =

{
(λ,Σ) :

θu − θℓ
σu,bu

= ∆1, min
b:Aℓ,b ̸=Aℓ,bℓ

λℓ,b − θℓ
σℓ,b

= ∆2, min
b:Au,b ̸=Au,bu

θu − λu,b
σu,b

= ∆3

}
.
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If {b : Aℓ,b ̸= Aℓ,bℓ} = ∅, then ∆2 = ∞. Same for ∆3.

For ∆1 = 0, θℓ = θu = θ. If 0 ≤ ∆2,∆3 <∞,

¯̄p(0,∆2,∆3; c
sim)

= sup
(λ,Σ)∈D(∆)

P
(
T̂ (θ) > c̃m(θ, csim);N (λ,Σ)

)
≤ sup

(λ,Σ)∈D(∆)

P

(
min
b∈B

λ̂ℓ,b − θ

σℓ,b
> csim;N (λ,Σ)

)
+ P

(
min
b∈B

θ − λ̂u,b
σu,b

> csim;N (λ,Σ)

)

≤ sup
(λ,Σ)∈D(∆)

P

(
min

{
λ̂ℓ,bℓ − θ

σℓ,bℓ
,
λ̂ℓ,b′ − λℓ,b′

σℓ,b′
+∆2

}
> csim;N (λ,Σ)

)

+ P

(
min

{
θ − λ̂u,bu
σu,bu

,
λu,b̃ − λ̂u,b̃

σu,b̃
+∆3

}
> csim;N (λ,Σ)

)
< α.

In addition,

lim
∆2,3→∞

¯̄p(0,∆2,∆3;α
sim)

= lim
∆2,3→∞

sup
(λ,Σ)∈D(∆)

P

(
T̂ (θ) > c̃m(θ, csim)

∣∣∣ T̂ (θ) = λ̂ℓ,bℓ − θ

σℓ
or T̂ (θ) =

θ − λ̂u,bu
σu,bu

;N (λ,Σ)

)
≤αc < α

where the second line follows from

lim
(∆2,∆3)→∞2

P

(
T̂ (θ) =

λ̂ℓ,bℓ − θ

σℓ,bℓ
or T̂ (θ) =

θ − λ̂u,bu
σu,bu

)
= 1.

By the continuity of ¯̄p(∆1,∆2,∆3;α
sim) in (∆2,∆3), we get

sup
∆2∆3≥0

¯̄p(0,∆2,∆3;α
sim) < α.

For all ∆1 > 0,

sup
∆2,∆3∈[0,∞)

¯̄p(∆1,∆2,∆3;α
sim)
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≤ sup
(λ,Σ):

θu−θℓ
σu,bu

=∆1

sup
(λ,Σ)∈D(∆)

P
(
T̂ (θℓ) > csim or T̂ (θm) > csim;N (λ,Σ)

)

≤ sup
(λ,Σ):

θu−θℓ
σu,bu

=∆1

P

(
max

{
min
b∈B

λ̂ℓ,b − θℓ
σℓ,b

,min
b∈B

θm − θu
σu,b

+
θu − λ̂u,b
σu,b

}
> csim;N (λ,Σ)

)

≤ sup
(λ,Σ):

θu−θℓ
σu,bu

=∆1

P

(
λ̂ℓ,bℓ − θℓ
σℓ,bℓ

> csim or − ∆1

2
+
θu,bu − λ̂u
σu,bu

> csim;N (λ,Σ)

)

≤P
(
N (0, 1) > csim

)
+ P

(
−∆1

2
+N (0, 1) > csim

)
< α.

In addition,

lim
∆1→∞

sup
∆2,∆3∈[0,∞)

¯̄p(∆1,∆2,∆3;α
sim) =

α

2
< α.

In sum, by the continuity of ¯̄p(∆1,∆2,∆3;α
sim) in (∆1,∆2,∆3),

sup
∆∈[0,∞)3

¯̄p(∆1,∆2,∆3;α
sim) < α.

It follows that there is ξ > 0 such that

sup
λ∈Λ

P
(
T̂ (θℓ) > c̃m(θℓ, c

sim) or T̂ (θm) > c̃m(θm, c
sim);N (λ, Σ̂n/n)

)
≤ sup

∆∈[0,+∞)3
¯̄p(∆1,∆2,∆3; c

sim) ≤ α− ξ

and (117) holds.

Case 2. η > 0. There exists κ′n → ∞ and κ′n ≪ κn such that

Λ̂n ⊆ Λn =

{
λ : λu,bu − λℓ,bℓ ≥

κ′n√
n

}
w.p.a. 1.

Thus

sup
λ∈Λ̂n

p̄(csim, λ, Σ̂n/n)

≤ sup
λ∈Λn

max
{
P
(
T̂ (θℓ) > csim;N (λ, Σ̂n/n)

)
, P

(
T̂ (θu) > csim;N (λ, Σ̂n/n)

)}
w.p.a. 1

≤ sup
λ∈Λn

max

{
P

(
max

{
λ̂ℓ,bℓ − θℓ
σ̂ℓ,bℓ/

√
n
,
θℓ − θu
σ̂u,bu/

√
n
+
θu − λ̂u,bu
σ̂u,bu/

√
n

}
> csim;N (λ, Σ̂n/n)

)
,
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P

(
max

{
λ̂ℓ,bℓ − θℓ
σ̂ℓ,bℓ/

√
n
+

θℓ − θu
σ̂ℓ,bℓ/

√
n
,
θu − λ̂u,bu
σ̂u,bu/

√
n

}
> csim;N (λ, Σ̂n/n)

)}
=P

(
N (0, 1) > csim

)
+ op(1) =

α

2
+ op(1) < α− η w.p.a. 1.

Thus (117) holds with ξ ∈ (0, α
2
− η).

C Union Bounds in Rambachan and Roth (2023)

Consider a simple panel data model with t = −T , ..., T . Let γ ∈ RT+T be a vector

of “event study” coefficients, which can be decomposed as

γ =

(
γpre

γpost

)
=

(
ξpre

τ + ξpost

)
.

ξpre =
(
ξpre−T , ..., ξ

pre
−1

)
, ξpost =

(
ξpost1 , ..., ξpost

T

)
, and γ0 = ξpre0 is normalized to zero.

The target object θ = ι′τ is the weighted average of the average treatment effect

on the treated for post-policy years, and ξ represents the bias from differences in

trends.

Under the relative magnitudes relaxation,

∣∣ξpostt − ξpostt−1

∣∣ ≤M max
s=−1,...,−T

∣∣ξpres+1 − ξpres

∣∣ .
The identified set of θ is (1) with λℓ = λu = Aδ,

A =

[
M |ι′L|1T×1IT , 1T×1

−M |ι′L|1T×1IT , 1T×1

]
, L︸︷︷︸

T×T

=


1

1 1
. . .

1 1 · · · 1

 , δ︸︷︷︸
T+1

=


ξpre1−T − ξpre−T

...

ξpre0 − ξpre−1

ι′γpost

 .

Under the second difference relative magnitudes relaxation,

|(ξt − ξt−1)− (ξt−1 − ξt−2)| ≤M max
s=−1,...,−T

|(ξs+1 − ξs)− (ξs − ξs−1)| .
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The identified set of θ is (1) with λℓ = λu = Aδ,

A =

[
ι′LMIT−1, 1(T−1)×1

ι′LMIT−1, 1(T−1)×1

]
, δ =

(
∆−T+2, · · · ,∆0, ι

′γpost + ι′Hξ−1

)′
,

H =
(
1, ..., T̄

)′
, L =

(
1, 3, ...,

t(t+ 1)

2
, ...,

T (T + 1)

2

)′

,

∆t = (ξt − ξt−1)− (ξt−1 − ξt−2) .
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