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Abstract

We study inference in models where a transformation of parameters exhibits

first-order degeneracy — that is, its gradient is zero or close to zero, making

the standard delta method invalid. A leading example is causal mediation

analysis, where the indirect effect is a product of coefficients and the gradient

degenerates near the origin. In these local regions of degeneracy the limiting

behaviors of plug-in estimators depend on nuisance parameters that are not

consistently estimable. We show that this failure is intrinsic — around points

of degeneracy, both regular and quantile-unbiased estimation are impossible.

Despite these restrictions, we develop minimum-distance methods that deliver

uniformly valid confidence intervals. We establish sufficient conditions under

which standard chi-square critical values remain valid, and propose a simple

bootstrap procedure when they are not. We demonstrate favorable power in

simulations and in an empirical application linking teacher gender attitudes to

student outcomes.
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1 Introduction

The delta method is a fundamental tool in econometric analysis for deriving the

asymptotic distribution of smooth functions of estimators. In its standard form, the

delta method relies on a non-zero gradient of the smooth function with respect to the

primitive parameter. When this condition holds, first-order linearization provides an

accurate approximation to the sampling distribution. However, in many empirically

relevant scenarios, the gradient may be zero at certain points in which case higher-

order terms become essential. As a result, the limiting distribution near points of

degeneracy typically differs substantially from that obtained under standard regular-

ity. A leading example arises in causal mediation analysis, where the indirect effect is

the product of two primitive parameters: the effect of the treatment on the mediator

and the effect of the mediator on the outcome. When these effects are zero, the gra-

dient of the indirect effect degenerates, leading to a nonstandard limiting distribution

of the Wald statistic (Sobel, 1982).

In practice, the researcher does not know whether the true parameter lies near such

points of degeneracy, and thus cannot know which asymptotic approximation is ap-

propriate for inference. This challenge has motivated a number of recent papers

on hypothesis testing when the gradient may be degenerate, see, for example, van

Garderen and van Giersbergen (2024) for an analysis of the mediation model men-

tioned above and Dufour et al. (2025) in a more general treatment of Wald-type

statistics. These papers acknowledge discontinuities in limiting distributions at the

point of degeneracy, and analyze the resulting distortions in Wald-type statistics.

Yet, they do not propose a unified asymptotic framework for studying local regions of

degeneracy. Moreover, most existing papers are interested in specific point hypothe-

ses, leaving open the broader question of how to construct uniformly valid confidence

intervals.

This paper makes two main contributions to the literature. Our first contribution is

a formal asymptotic framework for studying the behavior of statistics in local regions

of first-order degeneracy. In our framework, the primitive parameter is modeled as

local to the point of degeneracy, in the spirit of weak identification asymptotics, where

identifying information is local to zero. Under this setup, the behavior of simple plug-

in estimators becomes nonstandard and depends on local parameters that cannot be
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consistently estimated, formally capturing an observation in the existing literature

that the standard delta method does not properly approximate the behavior of plug-

in estimators near degenerate points (Miller et al., 2025).

Leveraging Le Cam’s limit of experiments framework (Le Cam, 1970, 1972), we show

that the problem of estimating a smooth function under degeneracy is asymptotically

equivalent to estimating a quadratic form of the shift parameter in a Gaussian shift

model. Within this model, we show that equivariant-in-law and quantile-unbiased

estimators cannot be obtained. Translated back to the original estimation problem,

these results imply that regular estimation is impossible — the limiting behavior of

any properly scaled and centered estimator in local regions of degeneracy depends on

nuisance parameters that cannot be consistently estimated. Moreover, there do not

exist asymptotically similar confidence intervals for the transformation of interest in

local regions of degeneracy.

Our second contribution is to construct confidence intervals that are both uniformly

valid and exhibit favorable power in local regions of degeneracy compared to the few

existing alternatives. The impossibility results mentioned above imply that standard

delta-method based confidence intervals may not be uniformly valid in such regions.

Indeed, in the context of mediation analysis our simulation study shows that standard

Wald-statistic based tests lead to confidence intervals that undercover when the true

primitive parameter is near the origin. We thus take a different approach and propose

confidence intervals based on test inversion with a minimum-distance test statistic.

We first show that when the parameter dimension is two, the standard chi-square

critical value is uniformly valid under either of two conditions: (i) the curvature of

the null curve is not too large, or (ii) the two branches of the null curve are sufficiently

close. These conditions hold in the leading mediation example. In more general

settings, we propose a bootstrap critical value based on a quadratic approximation

of the test statistic, and show that when the true parameter is well separated from

the point of degeneracy, the bootstrap critical value is nearly identical to the efficient

one.

We demonstrate the empirical relevance of our results in both simulation study and

real world. In simulation study our proposed methods are shown to control size uni-

formly over the parameter space while standard Wald-based inference can overreject

when the true primitive parameter is close to points of degeneracy, a finding also
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noted by Dufour et al. (2025). We additionally demonstrate favorable power prop-

erties of our proposed methods when compared to a method proposed by Andrews

and Mikusheva (2016), which turns out to also be applicable in this setting.1 These

improvements in power are also seen in an application to the data of Alan et al.

(2018), who consider the effect of teachers’ gender attitudes on student outcomes. In

revising their mediation analysis, we find that our proposed methods deliver tighter

confidence intervals than existing methods for all parameters. Our results support

a conclusion by van Garderen and van Giersbergen (2024) that the mediation effect

of a one-year exposure to a teacher with traditional negative views is negative, while

existing methods cannot rule out an effect of size zero.

The rest of this paper proceeds as follows. This section concludes with a review of the

related literature. Section 2 gives examples of when first-order degeneracy may be

a concern. Section 3 formally establishes the impossibility results mentioned above

and discusses implications for hypothesis testing. Section 4 introduces the minimum

distance based inference procedures and discusses how uniformly valid critical values

may be constructed. Sections 5 and 6 contain, respectively, the simulation study and

empirical application to the data of Alan et al. (2018). Section 7 concludes. Proofs

are deferred to Appendices A and B.

1.1 Literature Review

Our paper is related to previous literature on econometrics and statistics studying

inference under degeneracy, statistical impossibility results, and testing non-linear

restrictions.

There is a growing literature examining hypothesis tests in which the null includes

points of singularity. Gaffke et al. (1999) show that the distribution of the Wald

statistic at points of degeneracy is nonstandard, and Gaffke et al. (2002) derive its

asymptotic distribution under a variety of singular null hypotheses. Drton and Xiao

(2016) demonstrate the conservativeness of the Wald test at degeneracy points for

quadratic forms and for bivariate monomials of arbitrary degree. Dufour and Valery

(2016) propose rank-robust regularized Wald-type tests allowing for singular covari-

ance matrices. Dufour et al. (2025) analyze Wald tests for polynomial restrictions

1In their original analysis, Andrews and Mikusheva (2016) were interested in testing non-linear
restrictions in the context of weak identification.
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with possibly multiple constraints and show that such tests can under-reject, over-

reject, or even diverge under the null; see also Dufour et al. (2025) for additional

references in this area. Our paper differs from this literature in two key ways. First,

prior work focuses on testing problems where the null itself contains the singularity,

while our interest lies in constructing uniformly valid confidence intervals when the

null may be near a singularity. In simulations, we show that the upper bound on

the Wald statistic derived in Dufour et al. (2025) does not, in general, yield valid

confidence intervals. Second, instead of using a Wald statistic, we employ a minimum

distance–based test statistic, which is bounded in probability by construction. This

approach avoids the divergence issues documented in Dufour et al. (2025).

Our paper is also related to the hypothesis testing problem with a curved null. An-

drews and Mikusheva (2016) study this problem and show that the distribution of

minimum-distance statistics is dominated by a tractable distribution that depends

only on the maximal curvature of the null manifold relative to the known variance

matrix. Inverting their test leads to uniformly valid confidence intervals. However,

when the curvature of the null hypothesis is large, for example, in testing the signifi-

cance of an indirect effect, their procedure yields critical values that are close to those

from projection-based methods. By contrast, our procedure exploits the possibility

that the null hypothesis may include multiple manifolds that are close to one another,

which in turn reduces the critical value.

Finally, our paper contributes to the econometric literature on statistical impossibility

results. In particular, it is related to work by Hirano and Porter (2012) who show that

regular estimation of directionally, but not fully, differentiable functions is unattain-

able. Our paper takes a similar approach to that of Hirano and Porter (2012) in that

we rule out properties of estimators by analyzing a limiting experiment (Le Cam,

1970, 1972). However, the target functional in our limit experiment is distinct from

that of Hirano and Porter (2012). This approach of ruling out behaviors by analyzing

limit experiments has also been utilized by Kaji (2021) and Andrews and Mikusheva

(2022) in the study of weak identification. Moreover, our work is related to work by

Chen and Fang (2019b) who show that all standard bootstrap procedures necessarily

fail at points of degeneracy. We view this earlier work as complementary to ours,

similarly to how Fang and Santos (2019) establish that the bootstrap necessarily fails

as an inference procedure for the functionals considered in Hirano and Porter (2012).
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2 Overview and Examples

Consider a parameter θ P Θ Ď Rd and a twice continuously differentiable function

g : Θ Ñ R. We are interested in inference on gpθq in local neighborhoods of a point

θ‹ for which ∇gpθ‹q “ 0. Below, we give some empirically relevant examples of when

such a phenomenon may occur.

Example 2.1 (Mediation Analysis). Consider a causal mediation analysis with pa-

rameter θ “ pθ1, θ2q
1, where θ1 represents the effect of a treatment variable on a

mediator and θ2 represents the effect of the mediator on the outcome. The indirect

effect of the treatment on the outcome is then given by gpθq “ θ1θ2. At θ‹ “ p0, 0q1,

we have ∇gpθ‹q “ 0, which complicates inference on gpθq in local regions of θ‹.

As a result, recent works have proposed tests for the specific null-alternate pair,

H0 : gpθq “ 0 against H1 : gpθq ‰ 0, see van Garderen and van Giersbergen (2024) or

Hillier et al. (2024). However, these works do not consider the more general problem

of constructing confidence intervals in local regions of the origin.

Example 2.2 (Impulse Response Function). Consider an autoregressive ARp1q model

of the form yt “ θyt´1 ` ut where yt, yt´1 P R, θ P R, and ut P R is a white noise

process. The “impulse response function” is defined as gpθq “ θh and measures the

impact at time period h of an initial shock. Due to the importance of this in macroe-

conomic analysis, inference on gpθq has received attention from the econometric liter-

ature (Inoue and Kilian, 2002; Gospodinov, 2004; Mikusheva, 2012), mostly related

to inference when θ is close to one — the so-called “unit-root” problem. However,

due to degeneracy, inference on the impulse response function can also be complicated

when θ is close to θ‹ “ 0 as B

Bθ
gpθ‹q “ hθh´1

‹ “ 0 (Benkwitz et al., 2000; Lütkepohl,

2013).

Example 2.3 (Breakdown Point Analysis). Consider a missing data setup in which

the researcher observes tYiDi, Di, Xiu
n
i“1, where Di P t0, 1u represents whether or

not an observation’s outcome Yi is observed, and Xi is a set of discrete covariates,

i.e., Xi P X :“ tx1, . . . , xKu. To achieve identification of parameters of interest,

assumptions are typically made about the selection mechanism, such as “missing

conditionally at random”, i.e, Yi K Di | Xi. Ober-Reynolds (2026) proposes assessing

the robustness of results to these assumptions through a breakdown point analysis.

This assessment involves generating a confidence interval for the squared Hellinger
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distance between P0, the distribution of Xi | Di “ 0, and P1, the distribution of

Xi | Di “ 1. Since Xi is discrete, this distance can be written as

gpθq “ H2
pP0, P1q “

1

2

K
ÿ

k“1

p
a

θ0,k ´
a

θ1,kq
2

where θd,k “ PrpX “ xk | D “ dq. Simple sample analog estimators of θ0,k and θ1,k

are
?
n-consistent and asymptotically normal under mild assumptions. However, the

derivative of gpθq with respect to the quantities θ0,k and θ1,k are given by

B

B θ0,k
gpθq “

1

2

a

θ0,k ´
a

θ1,k
a

θ0,k
,

B

Bθ1,k
gpθq “ ´

1

2

a

θ0,k ´
a

θ1,k
a

θ1,k
.

Let θ‹ be a point such that θ0,k “ θ1,k for all k. This occurs if the data is missing

completely at random, that is D K pY,Xq. At θ‹, the derivatives above are uniformly

equal to zero and the squared Hellinger distance gpθq between P0 and P1 is zero.

Thus, when θ is close to θ‹, that is when P0 is close to P1, standard approaches to

inference on gpθq will fail.

Example 2.4 (Weak IV Bias and Size Distortion). Consider a standard homoskedas-

tic linear IV model,

yi “ xiβ ` ϵi

xi “ z1
iθ ` vi

where yi, xi P R, Erpϵi, viq
1s “ 0, and Z “ pz1

i, . . . , z
1
nq1 P Rnˆdz is treated as fixed.

When θ is close to zero, identification is referred to as “weak” and it is well known

that standard inference procedures for β fail to control size (Staiger and Stock, 1994).

Stock and Yogo (2005) provide bounds on the size distortion of Wald tests for β in

terms of the concentration parameter,

gpθq “ θ1
pZ 1Zqθ{σ2

v .

Ganics et al. (2021) extend this analysis and develop confidence intervals for the

bias and size distortion. In both papers, the researcher makes inferences about the

concentration parameter by examining the distribution of the F -statistic, a scaled

version of gpθ̂q, where θ̂ is the OLS estimate of θ. The analyses of both Stock and
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Yogo (2005) and Ganics et al. (2021) are complicated by the fact that the limiting

distribution of gpθ̂q is non-standard when θ is close to zero, that is, when identification

is weak. This can also be seen as inference in local regions of degeneracy — at θ‹ “ 0

we have that ∇gpθ‹q “ 2pZ 1Zqθ{σ2
v “ 0.

Example 2.5 (Explained Variance in Linear Regression). Consider a linear regression

model,

Y “ X 1θ ` ϵ, ErϵXs “ 0

and define σ2
Y “ VarpY q and ΣX “ ErXX 1s. A parameter of interest is the proportion

of variance in Y explained by the linear model with X, i.e

gpθq “ θ1ΣXθ{σ2
Y ,

that is, the population R2. Although empirical work typically reports only a point

estimate of R2, reporting a confidence set for R2 is informative for comparing the

explanatory power or predictive performance of competing models (Hawinkel et al.,

2024). When R2 is bounded away from zero and one, standard errors and confidence

intervals can be obtained using conventional asymptotic approximations (Cohen et al.,

2013). However, at θ‹ “ 0 we have that ∇gpθq “ 2ΣXθ‹{σ2
Y “ 0. Consequently, infer-

ence on the explained variance is non-standard when θ is close to zero, or equivalently,

when R2 is close to zero.

This type of parameter is also of interest in labor economics when explaining variation

in wage regressions. If a model under consideration can only explain a weak amount

of variation in wage dispersion, we may expect θ to be close to zero. Card et al.

(2013) compare the baseline Abowd, Kramarz, and Margolis (1999) (AKM) model

with various extensions in terms of each models ability to explain increases in wage

inequality in West Germany. They find that these extensions provide little explana-

tory power on top of the baseline AKM model. The additional variance explained

by these extensions corresponds to the linear regression model with Y equal to the

residual from the AKM model and X equal to the new fixed-effect terms introduced

by the extended models. They find that these new fixed-effect terms are close to zero

suggesting that degeneracy may be a concern when conducting inference on gpθq.
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3 Impossibility Results

In this section we establish that standard approaches to inference on gpθq necessarily

fail in local regions of first-order degeneracy. We begin in Section 3.1 by introducing

a parametric framework to study this problem and defining what it means for an

estimator to be “regular” in this setting. Section 3.2 then uses a representation

theorem to show that the problem reduces to estimation of quadratic forms in a

Gaussian shift experiment, where we prove that well-behaved estimators cannot be

constructed. Section 3.3 extends the analysis in two directions: first, to hypothesis

testing problems where the null hypothesis that gpθq “ gpθ‹q may hold on a nontrivial

subset of the parameter space, and second, to infinite-dimensional models, where we

show that the impossibility results remain valid so long as the model contains a

suitable parametric submodel. Together, these results demonstrate that standard

approaches to inference necessarily break down in local regions of degeneracy.

3.1 Preliminaries

We begin by assuming that the researcher observes data Xpnq “ pX1, . . . , Xnq drawn

from a parametric model Pn,θ,

Xpnq
„ Pn,θ (3.1)

where θ P Θ Ă Rd and Θ is a compact set with a nonempty interior, Θ˝ ‰ H. Let Xi

denote the support of Xi, which could be a general space, and denote X n “
Śn

i“1Xi.

We assume that the sequence of statistical models
`

Pn,θ : θ P Θ˝
˘

, indexed by the

sample size n, is locally asymptotically normal in the sense of Le Cam (1960).

Assumption 3.1 (Local Asymptotic Normality). There exists a sequence rn Ñ 8

such that for every θ P Θ˝ and every sequence hn Ñ h P Rd

log

˜

dPn,θ`hn{rn

dPn,θ

pXpnq
q

¸

“ h1∆n ´
1

2
h1Γθh ` Znphq (3.2)

where ∆n converges in distribution to Np0,Γθq under the sequence of measures Pn,θ,

∆n
θ

ù Np0,Γθq, and Znphq converges in probability to zero under Pn,θ for every

h P Rd, Znphq
p
ÝÑ 0.
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Example 3.1 (Smooth Parametric Models). A leading example of a model that

satisfies (3.2) is when the researcher observes i.i.d data, Xi
iid
„ Pθ where θ P Θ.

Assume that there exists a dominating measure µ such that Pθ ! µ for all θ P Θ˝ and

the Radon-Nikodym densities pθ “ dPθ{dµ are differentiable in quadratic mean, that

is there is a function 9ℓθ such that for any θ P Θ˝,

ż
„

?
pθ`h ´

?
pθ ´

1

2
h1 9ℓθ

?
pθ

ȷ2

dµ “ op}h}
2
q, h Ñ 0 (3.3)

and such that the Fisher information, Γθ “ Pθ
9ℓθ 9ℓ1

θ, is nonsingular. Let Pn,θ “ bn
i“1Pθ,

then, for any θ P Θ˝ and any hn Ñ h P Rd, the sequence of log likelihood ratios satisfies

(van der Vaart (1998), Theorem 7.2):

log

ˆ

dPn,θ`h{
?
n

dPθ

pXpnq
q

˙

“ log
n
ź

i“1

pθ`h{
?
n

pθ
pXiq

“
1

?
n

n
ÿ

i“1

h1 9ℓθpXiq ´
1

2
h1Γθh ` Rnphq,

whereRnphq “ oPn,θ
p1q for all h P Rd. By the central limit theorem, 1?

n

řn
i“1

9ℓθpXiq
Pn,θ
ù

Np0,Γθq. Thus, by letting ∆n “ 1?
n

řn
i“1

9ℓθpXiq we see that Assumption 3.1 is satis-

fied with rn “
?
n.

We study a twice continuously differentiable scalar functional g : Θ Ñ R, and the

behavior of estimators of gpθq in local regions of a point θ‹ P Θ˝ which is such that

the first-order derivatives of gp¨q at θ‹ are zero. We will refer to θ‹ as the “point of

degeneracy” and local neighborhoods of θ‹ as “local regions of degeneracy.”

Assumption 3.2 (Differentiability). The function g : Θ Ñ R is twice continuously

differentiable on Θ, a compact subset of Rd, with ∇gpθ‹q “ 0 and ∇2gpθ‹q ‰ 0 for

some θ‹ P Θ˝.

Given the maintained assumption of a locally asymptotically normal model, it is

useful to examine regions close to θ‹ by adopting a local parameterization around θ‹,

defining

θn,h “ θ‹ ` h{rn

and letting Pn,h “ Pn,θ‹`h{rn . In our framework an estimator is an arbitrary measur-
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able function of the data, Ψn : X n Ñ R. We consider sequences of estimators, Ψn,

that converge in distribution under every sequence of alternative distributions Pn,h

to some limiting law, Lh. This is denoted

r2n
`

Ψn ´ gpθn,hq
˘ h

ù Lh. (3.4)

where we note that the convergence rate is r2n instead of rn due to the fact that gpθq is

“flat” around θ‹. It is straightforward to show that tests for gpθq based on estimators

whose convergence rates are slower than r2n when θ is close to θ‹ have trivial power

against local alternatives of the form gpθ‹ ` h{rnq.

Example 3.2 (Plug-In Estimators). Suppose the researcher has access to an estima-

tor θ̂ of θ that satisfies

rnpθ̂ ´ θn,hq
h

ù W

for every h P Rd. In the smooth parametric models described in Examples 3.1, such

an estimator could be the maximum likelihood estimator or a Bayes estimator such

as the posterior mean. Since gp¨q is assumed to be twice continuously differentiable,

the limiting behavior of the plug-in estimator gpθ̂q can be found via the second order

delta method

r2npgpθ̂q ´ gpθn,hqq
h

ù h1∇2gpθ‹qW `
1

2
W 1∇2gpθ‹qW

The behavior of the plug in estimator, gpθ̂q, depends on the local parameter h.

We focus on ruling out regular and locally asymptotically α-quantile unbiased esti-

mation of gpθn,hq in local regions of θ‹. Formally, these notions are defined as follows.

Definition 3.1 (Regularity). Let Ψn be an estimator satisfying (3.4), and let α P

p0, 1q.

(i) Ψn is regular if its limiting distribution does not depend on h, i.e. there exists

a distribution L on R such that Lh “ L for all h P Rd.

(ii) Ψn is locally asymptotically α-quantile unbiased if its limiting α-quantile is zero

for every h, i.e. Lhtp´8, 0su “ α for all h P Rd.

The existence of regular estimators is closely tied to the validity of Wald-type inference

procedures — without regular estimators, standard Wald-type inference procedures
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that compare test statistics to fixed critical values will not have correct asymptotic

size. Similarly, the existence of locally asymptotically α-quantile unbiased estimators

is closely tied to the existence of asymptotically similar confidence intervals for gpθq

in local regions of θ‹. Since any asymptotically similar confidence interval of the form

p´8, ĉs can be converted into a locally asymptotically α-quantile unbiased estimator

by taking Ψn “ ĉ, by ruling out such estimators we also rule out the possibility of

similar one-sided confidence intervals.1

3.2 Analysis in the Limiting Experiment

To examine the possible behavior of such estimators, we make use of a representation

result, given below in Proposition 3.1, which is a slight adaptation of Theorem 8.3 in

van der Vaart (1998). This earlier result is, in turn, a version of Le Cam’s limit of

experiments analysis for locally asymptotically normal models (Le Cam, 1970, 1972).

Proposition 3.1 (Limit Experiment). Suppose Assumption 3.1 holds, and let Ψn be

a sequence of estimators satisfying (3.4). Then there exists a randomized statistic

ΨpZ,Uq, where Z is drawn from the Gaussian shift experiment

Z „ Nph,Γ´1
θ‹

q, h P Rd,

and U „ Unifp0, 1q independent of Z, such that

ΨpZ,Uq ´ 1
2
hJ∇2gpθ‹qh „ Lh for all h P Rd.

Proposition 3.1 establishes an equivalence between estimating gpθq in local regions of

first-order degeneracy and estimating of a quadratic form of the mean parameter in a

Gaussian shift model in which one observes a single draw Z „ Nph,Γ´1
θ‹

q, where Γ´1
θ‹

is known but h is not. In particular, in a spirit similar to the approach in Hirano and

Porter (2012), we can rule out sufficiently regular behavior of estimators of gpθq in

local regions of θ‹ if the corresponding behavior is not permissible in the Gaussian shift

model. Intuitively, sufficiently regular estimation of quadratic forms in the Gaussian

1The focus on one-sided confidence intervals is largely for simplicity of exposition. If p´8, ĉ1s and
rĉ2,8q are two asymptotically similar confidence intervals for gpθq each with coverage rate 1 ´ α{2
and ĉ1 ď ĉ2 with probability approaching one, then rĉ2, ĉ1s is asymptotically similar with coverage
rate 1 ´ α.
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shift experiment is not possible since the parameter of interest changes non-linearly

as the mean parameter h varies over Rd while the distribution of Z changes in a linear

fashion.

To illustrate, suppose that there was an estimator, ΨpZ,Uq, and law, L with
ş

x2 dLpxq ă

8, such that ΨpZ,Uq´ 1
2
h1∇2gpθ‹qh is distributed according to L for all h P Rd. Since

any such estimator can be turned into an unbiased estimator by subtracting off the

mean of L, it is without loss of generality to assume that L is mean zero and thus

that ΨpZ,Uq is unbiased. On the other hand, the Cramér-Rao lower bound for the

variance of any unbiased estimator of 1
2
h1∇2gpθ‹qh in the Gaussian shift model yields

VarpΨpZ,Uqq ě h1
p∇2gpθ‹qq

1Γ´1
θ‹

p∇2gpθ‹qqh. (3.5)

By letting h vary over Rd, the right hand side of (3.5) can be made arbitrarily large

while the left hand side is bounded by the second moment of L. Thus, no such

estimator can exist. Our full argument relies on analyzing characteristic functions,

but the intuition is similar.

Remark 3.1. It is instructive to compare the argument sketched above to the ar-

gument of Hirano and Porter (2012), who rule out regular estimation of gpθq when

g is directionally, but not fully differentiable at a point θ‹. The Hirano and Porter

(2012) argument relies on analyzing the behavior of a potential regular estimator as

the local parameter h approaches zero. Our arguments, on the other hand, rule out

regular estimation by analyzing the “global” behavior of a potential regular estimator,

that is, the behavior as h varies over Rd. The approach taken by Hirano and Porter

(2012) does not apply in the present setting as the parameter of interest in the limit

experiment is non-linear but continuously differentiable at zero. In contrast, in the

limit experiment of Hirano and Porter (2012) the parameter of interest is a function

κphq which is exactly linear around values of h ‰ 0, but is not continuously differen-

tiable at zero. The argument of Hirano and Porter (2012) is able to additionally rule

out locally unbiased estimation whereas in our setting locally unbiased estimation is

possible.

Proposition 3.2. Let Z „ Nph,Γ´1
θ‹

q and U „ Unifp0, 1q independently of Z. Let J

be a d ˆ d non-zero, symmetric matrix.

1. There is no randomized statistic ΨpZ,Uq and law L on R with ΨpZ,Uq´h1Jh
h
„
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L for all h P Rd.

2. Let tLhuhPRd be a system of probability measures on R such that (i) Lhtp´8, 0su “

α for some α P p0, 1q and (ii) the CDFs associated with Lh, Fhp¨q, are differ-

entiable at zero with derivative bounded below by some ϵ ą 0. Then, there does

not exist a randomized statistic ΨpZ,Uq such that ΨpZ,Uq ´ h1Jh „ Lh for all

h P Rd.

Together, Propositions 3.1 and 3.2 can be combined for the main result of this section,

which rules out sufficiently regular estimation in local areas of first-order degeneracy.2

Theorem 3.1 (Impossibility of Regular Estimation). Suppose Assumptions 3.1 and 3.2

hold.

1. There is no estimator sequence Ψn and law L on R such that

r2n
`

Ψn ´ gpθn,hq
˘ h

ù L for all h P Rd.

2. Let tLhuhPRd be a family of distributions such that (i) Lhtp´8, 0su “ α for some

fixed α P p0, 1q and all h, and (ii) the CDFs, Fhp¨q, of Lh are differentiable

at zero with derivatives bounded below by ϵ ą 0. Then there is no estimator

sequence Ψn such that

r2n
`

Ψn ´ gpθn,hq
˘ h

ù Lh for all h P Rd.

Theorem 3.1 rules out sufficiently well-behaved estimation of gpθq when the true

parameter is “close” to θ‹. In particular, Theorem 3.1(a) rules out the possibility

of regular estimation — the properly scaled and centered behavior of any estimator

Ψn of gpθq must depend, in local regions of θ‹, on the local parameter h, which

cannot be consistently estimated. Similarly, Theorem 3.1(b) rules out the possibility

of α-quantile unbiased estimation. As mentioned below Definition 3.1, this result

has profound implications for inference on gpθq in local regions of θ‹. In particular,

both asymptotically exact Wald-type inference procedures and asymptotically similar

confidence intervals for gpθq are unavailable in local regions of degeneracy θ‹.

2In the application of Proposition 3.2 to our setting, take J “ 1
2∇

2gpθ‹q. The result in Propo-
sition 3.2 rules out well-behaved estimation of any quadratic form of the shift parameter, not just
those associated with the Hessian of gp¨q.



Impossibility Results Page 15

Theorem 3.1(a) also has implications for the construction of efficient estimators of

gpθq in local regions of θ‹. Standard notions of efficiency are tied to comparing the

asymptotic risk of regular estimators. Theorem 3.1(a) shows that, after properly

scaling, such regular estimators are not available in local regions of degeneracy. Con-

sequently, alternative notions of efficiency must be considered in these settings and

standard estimators may not be optimal in these regions. As an example, one can

show that estimators of gpθq that are efficient under a standard asymptotic regime

can be dominated by alternative estimators in local asymptotic mean squared error

around points of degeneracy.

Remark 3.2. As with the impossibility of locally asymptotically α-quantile unbiased

estimation for directionally but not fully differentiable parameters established in Hi-

rano and Porter (2012), the result in Theorem 3.1 requires some regularity conditions

on the system of limiting laws tLhuhPRd .3 The regularity condition in Theorem 3.1(b)

implies that, if a locally asymptotically α-quantile unbiased estimator were to exist,

its associated limiting laws Lh must be able to be made arbitrarily flat. In partic-

ular, if each limiting law Lh has a density with respect to Lebesgue measure, these

densities evaluated at zero, which is by definition the α-quantile of each Lh, must be

able to be made arbitrarily small. As an example, suppose that tLhuhPRd is a family

of Gaussian distributions on R associated with a locally asymptotically α-quantile

unbiased estimator. Then, the variance of these Gaussian distributions must be able

to become arbitrarily large as h ranges over Rd.

3.3 Hypothesis Testing and Infinite Dimensional Models

The above analysis rules out standard approaches to inference on gpθq in local regions

of θ‹. These results are informative when one is interested in constructing confidence

intervals for gpθq around points of first-order degeneracy when the data is drawn from

a parametric model satisfying Assumption 3.1. In this subsection, we consider two

extensions of our results. In the first, we consider the somewhat simpler problem of

testing the null hypothesis H0 : gpθq “ gpθ‹q. We show that if the null hypothesis

contains a sufficiently rich set of values and a similar test exists, this similar test

must have low power in local regions of θ‹. In the second extension we generalize

3Let F0p¨q be the CDF associated with L0. Hirano and Porter (2012) show that, for any α-
quantile unbiased estimate, it must be the case that either F0p¨q is not differentiable at zero or must
satisfy F 1

hp0q “ 0.
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Theorem 3.1 to infinite dimensional, i.e, semiparametric or nonparametric, models.

3.3.1 Hypothesis Testing

In this subsection we consider the problem of testing the null hypothesis H0 : gpθq “

gpθ‹q where the alternative can be one sided, i.e, H1 : gpθq ą gpθ‹q or two-sided,

H1 : gpθq ‰ gpθ‹q. To setup, define H‹ to be the set of local parameters, h P Rd, such

that gpθn,hq is asymptotically indistinguishable from gpθ‹q, i.e, r2npgpθn,hq´gpθ‹qq Ñ 0;

H‹ “ th P Rd : h1∇2gpθ‹qh “ 0u.

We study the behavior of asymptotically similar tests in local regions of degeneracy.

In this setup, an asymptotically similar test is a statistic Ξn : X n Ñ t0, 1u such that

lim sup
nÑ8

Pθn,h
pΞn “ 1q “ α for all h P H‹.

Equivalently, the test is similar if lim supnÑ8 Pθn,h
p1´Ξn ď 0q “ α. Letting Ψn “ 1´

Ξn it is apparent that this is a nearly identical requirement to that of local α-quantile

unbiasedness in Definition 3.1, with the key difference being that the requirement

only needs to hold for local parameters h P H‹ rather than for all h P Rd.

However, unlike quantile unbiased estimation, which is ruled out in Theorem 3.1,

asymptotically similar tests can exist — one can imagine constructing a similar test

by flipping a weighted coin. Such a test, though, may not be powerful against local

alternatives close to θ‹. Our main result in this subsection establishes this formally:

if such test exists then its local asymptotic power curve must be flat at θ‹ in the

sense that the derivative of the local asymptotic power curve with respect to the local

parameter h exists and is equal to zero.

Define the local asymptotic power curve as

Pphq “ lim sup
nÑ8

Pθn,h
pΞn “ 1q (3.6)

Proposition 3.3. Let Ξn be an asymptotically similar test such that Pphq is differen-

tiable at h “ 0. Then, the directional derivative of the local asymptotic power curve,
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Pphq, in directions h P H‹ is equal to zero:

DhPp0q “ 0 for all h P H‹.

In particular, if ∇2gpθ‹q is indefinite then H‹ spans Rd and ∇Pp0q is equal to zero.

Remark 3.3 (Differentiability of P). A common strategy in hypothesis testing is to

compare a test statistic Ψ˝
n to a possibly data-dependent critical value ĉn, rejecting

when the former exceeds the latter. Let Ψn “ Ψ˝
n ´ ĉn, so the rejection rule can be

written as Ξn “ 1tΨn ě 0u. If Ψn
h

ù Lh for each h P Rd, and if the CDF of L0 is

continuous at zero, then the resulting local asymptotic power curve P is differentiable

at 0; see Lemma A.3. This is a milder version of the regularity condition imposed on

quantile unbiased estimators in Hirano and Porter (2012).

The first statement in Proposition 3.3 follows immediately from the definition of

similarity along with the fact that H‹ is a cone: because Pphq is constant on H‹,

its directional derivatives in directions h P H‹ must be zero. The force of the result,

however, lies in the structure of H‹ near points of degeneracy. In standard inference

problems, i.e, when the true parameter is well separated from points of degeneracy, the

parameter of interest in the limit experiment is a linear function of the shift parameter

h, so H‹ “ t0u and the zero-derivative condition carries no information about the

shape of the power curve. By contrast, when g exhibits first-order degeneracy H‹, can

be a non-trivial cone — that is, it may contain directions other than zero — and the

constraint DhPp0q “ 0 for h P H‹ becomes substantive. When ∇2gpθ‹q is indefinite,

H‹ spans Rd and the entire gradient of the local asymptotic power curve vanishes at

the origin, implying that power cannot increase at a linear rate in any direction away

from θ‹. The following examples illustrate the strength of this restriction.

Example 2.1, cont. Consider again the mediation model, where the original model

is given pPθ : θ P Θ Ď R2q. Suppose the researcher is interested in testing the

null hypothesis H0 : θ1θ2 “ 0, that is gpθq “ θ1θ2 and θ‹ “ 0. We can show that

H‹ “ th P R2 : h1h2 “ 0u. Since H‹ is the union of the two coordinate axes,

spanpH‹q “ R2. Thus, we have that ∇Pp0q “ 0 for any asymptotically similar test.

We can equivalently show that H‹ must span R2 by noting that the second derivative
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matrix of gp¨q at θ‹ is given by
˜

0 1

1 0

¸

,

which is indefinite.

Example 3.3 (Squared Mean). On the other hand consider the case where θ “

pθ1, θ2q P R2 and the researcher is interested in testing the null hypothesis H0 :

θ21 ` θ22 “ 0. In this case gpθq “ θ21 ` θ22, θ‹ “ 0, and H‹ “ tp0, 0qu. Since ∇2gpθ‹q is

positive definite, spanpH‹q “ t0u. Thus, the results of Proposition 3.3 do not apply

and powerful similar tests for the null hypothesis H0 : θ
2
1 `θ22 “ 0 can be constructed,

see e.g Chen and Fang (2019a).

Example 3.4 (Standard Inference). Suppose that the primitive parameter is univari-

ate θn,h “ θ0 ` h{rn P R, and local to a point θ0 such that g1pθ0q ą 0, that is we are

well separated from points of degeneracy. In this setting, the researcher typically has

access to an estimator Ψn that satisfies rnpΨn ´ gpθn,hqq
h

ù Np0, σ2q. This estimator

is regular and thus α-quantile-unbiased for all α P p0, 1q. Based on this estimator, an

asymptotically similar one sided test for the null hypothesis, H0 : gpθq “ gpθ0q, can

be constructed with local asymptotic power curve Pphq “ 1 ´ Φpc1´α ´ g1pθ0qh{σq,

where Φp¨q is the standard normal CDF and c1´α is its 1 ´ α quantile. Here,
B

Bh
Pphq

ˇ

ˇ

h“0
“ g1pθ0qϕpc1´αq{σ ą 0.

Remark. Recent papers by van Garderen and van Giersbergen (2024) and Dufour

et al. (2025) also study tests of the null hypothesis H0 : gpθq “ gpθ‹q in various

contexts. van Garderen and van Giersbergen (2024) consider the case of the mediation

model, that is where θ “ pθ1, θ2q
1 and gpθq “ θ1θ2. They assume that the researcher

has access to an asymptotically normal estimate of θ, θ̂ “ pθ̂1, θ̂2q1 and show that there

is no reasonable similar test of the form: reject if maxt|θ̂1|, |θ̂2|u ą gpmint|θ̂1|, |θ̂2|uq,

where gp¨q may be an arbitrary function. Similarly, Dufour et al. (2025) consider the

behavior of Wald type tests based on the test statistic Wn “
gpθ̂q´gpθ‹q

∇gpθ̂q1Σ∇gpθ̂q
, where Σ

represents the asymptotic variance of θ̂. The authors show that, when θ is close to

θ‹, the behavior of the Wald statistic can be irregular and propose alternate critical

values for testing the null hypothesis H0 : gpθq “ gpθ‹q using Wn.

We view our results as complementary to these existing results. The results in Propo-

sition 3.3 are narrower in their conclusion — we establish only that similar tests must
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have flat power at θ‹ — but broader in their scope, since they apply to any test-

ing procedure that depends on the data, rather than only to procedures based on a

specific initial estimator θ̂.

3.3.2 Infinite Dimensional Models

In many settings the researcher may not be willing to assume that the data comes from

a finite dimensional parametric model as described in the previous section. Following

a tradition on studying semiparametric efficiency (Bickel et al., 1993), we show that

this does not affect our impossibility results so long as the larger model contains a

parametric submodel satisfying Assumptions 3.1 and 3.2.

Formally, let the model P be a collection of sequences of probability measures on the

sample space X n from the previous section. That is, each element of P is a sequence of

probability measures tPnu, where each probability measure Pn is defined on the sample

space X n. A finite dimensional submodel, Pf , is some smaller collection of sequences

of probability measures that can be parameterized as Pf “ ptPn,θunPN : θ P Θq for an

open set Θ P Rdf . Fix a “centering” sequence of probability measures tP0,nunPN P P .

We say that the submodel passes through tP0,nu if tP0,nu P Pf , that is tP0,nu “ tPn,θu

for some θ P Θ. We will call such a parametric model “regular” if Assumption 3.1

holds and the model passes through tP0,nu.

We suppose that the object of interest is a quantity that depends on the sequence of

underlying probability measures, that is we can think of the estimand grtPnus as a

functional defined on P . For any regular parametric model, Pf , this implicitly defines

a function on θ via the relation gf pθq “ grtPn,θus. With this notation defined, we

show that the results of Theorem 3.1 can be extended in a straightforward fashion to

infinite dimensional models.

Remark 3.4 (Semiparametric Models with i.i.d Data). In the literature on semipara-

metric estimation with i.i.d data, where the researcher observes repeated observations

drawn independently from a probability distribution P on X belonging to a model

P (Bickel et al., 1993), one can associate the entire sequence of probability measures

tbn
i“1P : n P Nu with the underlying common distribution P . With this association,

one can consider the model P described above as a collection of probability mea-

sures on X rather than a collection of sequences of probability measures tPnu where



Minimum Distance Based Inference Page 20

each Pn is defined on X n. The parameter, in turn, can be defined as a function of

the underlying distribution P rather than as a function of the entire sequence by

grP s ” grtbn
i“1P : n P Nus. However, when dealing with time-series or network data,

it may not be possible to define the parameter as a function of some representative

underlying distribution and is instead a property of the sequence tPnu.

Corollary 3.1 (Impossibility in Infinite-Dimensional Models). Suppose the data are

generated from a sequence of distributions tP0,nu P P. Let Pf Ă P be a regular para-

metric submodel passing through tP0,nu, and suppose that gf satisfies Assumption 3.2

with tPn,θ‹
u “ tP0,nu.

1. There is no estimator sequence Ψn and law L on R such that, along every regular

parametric submodel Pf ,

r2n
`

Ψn ´ gf pθ‹ ` h{rnq
˘ h

ù L for all h P Rdf .

2. Let tLhu
hPRdf be a family of distributions such that (i) Lhtp´8, 0su “ α for

some α P p0, 1q and all h, and (ii) each Lh has a CDF, Fh, differentiable at zero

with derivative bounded below by ϵf ą 0. Then there is no estimator sequence

Ψn such that, along every regular parametric submodel Pf ,

r2n
`

Ψn ´ gf pθ‹ ` h{rnq
˘ h

ù Lh for all h P Rdf .

4 Minimum Distance Based Inference

In this section, we construct a uniformly valid confidence interval for gpθq : Θ Ñ R
using estimator θ̂. The confidence interval is obtained by inverting the hypothesis

H0 : gpθq “ τ , and we use a minimum distance (MD) test statistic

T̂npτq “ inf
θPΘ:gpθq“τ

r2npθ̂ ´ θq
1Σ´1

pθ̂ ´ θq.

We focus on the settings where the standard first order approximation of gpθq fails

at θ‹, but the second order derivative is nondegenerate; that is, B2g
BθBθ1 pθ‹q “ H with H

full rank.

In Section 4.1, we discuss a simple case where Θ Ď R2 and H is indefinite, and we
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provide sufficient conditions under which the standard critical value Qpχ2
1, 1 ´ αq is

uniformly valid. In Section 4.2, we propose a computationally simple method for a

general g, which can be generalized to cases with higher order singularity.

4.1 Two-Dimensional θ and Indefinite H

To simplify notation, consider the null hypothesis

H0 : gpθ1, θ2q :“ p1 ` ρqθ22 ´ p1 ´ ρqθ21 “ τ, (4.1)

with |ρ| ă 1 and τ ě 0. The restriction |ρ| ă 1 guarantees that H is indefinite,

while τ ě 0 is a normalization. For simplicity, let n “ rn “ 1, and assume θ̂ ´ θ „

Np0, I2q. The quadratic form g and the normality of θ̂ can be viewed as second order

approximations, with general asymptotic results provided in Theorem 4.1.

Let X2pθ1q P R` be the positive solution for θ2 such that (4.1) holds. Let S0pτq be

the null parameter space, which contains two separate curves, S`
0 pτq and S´

0 pτq,

S0pτq “ S`
0 pτq Y S´

0 pτq

where

S`
0 pτq “

!

`

x1, X2px1q
˘

: x1 P R
)

, S´
0 pτq “

!

`

x1,´X2px1q
˘

: x1 P R
)

.

Let Spτ, cq be the acceptance region with critical value c2, i.e., the c-enlargement of

S0pτq,

Spτ, cq “
␣

px1, x2q : px1 ´ θ1q
2

` px2 ´ θ2q
2

ď c2, pθ1, θ2q P S0pτq
(

.

Proposition 4.1. Let c “
a

Qpχ2
1, 1 ´ αq and θ̂ ´ θ „ Np0, I2q. Suppose either

1´ρ?
τp1`ρq

ď 1
c
or ρ ě 0. For all θ P S0pτq, it holds that

P
´

θ̂ P Spτ, cq
¯

ě 1 ´ α.

Proposition 4.1 shows that the standard MD test remains valid under a curved null
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Figure 4.1: Acceptance Regions under Low (Left) and High (Right) Curvature.
Red curves represent S`

0 pτq (left) and S0pτq (right). Black dash curves represent the boundaries of S`pτ, cq (left)

and S`pτ, cq and S´pτ, cq (right). “*” represents θ, and the blue curves represent BBpθ, rq for some r ą c.

hypothesis when the maximum curvature of S`
0 pτq, given by 1´ρ?

τp1`ρq
, is sufficiently

small, or when the two branches S`
0 pτq and S´

0 pτq are sufficiently close. The argument

proceeds by comparing the coverage of Spτ, cq with that of the auxiliary acceptance

set,

Saux “
␣

px1, x2q : px2 ´ θ2q
2

ď c2
(

.

whose coverage is exactly 1´α. Expressed in polar coordinates, the coverage depends

on the fraction of each circle of radius r centered at θ P S`
0 pτq, denoted BBpθ, rq, that

is contained in the acceptance region. Consequently, it suffices to show that, for each

r, the arc length of BBpθ, rq contained in Spτ, cq is no smaller than that of Saux.

When r ď c, the entire circle is covered by both Saux and Spτ, cq by construction.

For r ą c, let Cupτq and Cℓpτq denote the upper and lower boundaries of S`pτ, cq; see

Figure 4.1 left panel. If 1´ρ?
τp1`ρq

ď 1
c
, the circle BB pθ, rq intersects Cupτq at points A

and B, and Cℓpτq at points C and D. We can show that the lengths of chords AC

and BD are no smaller than 2c. Otherwise, BpG, cq Ę S`pτ, cq, where G denotes the

intersection of AC with S`
0 pτq, contradicting the definition of S`pτ, cq. Note that

the arcs of BBpθ, cq covered by Saux correspond to chords of length 2c. It therefore

follows that the portion of BBpθ, cq covered by Spτ, cq is larger than that covered by

Saux.

If 1´ρ?
τp1`ρq

ą 1
c
, Cupτq has a kink due to the high curvature. Thus, there exist θ P S`

0 pτq

and r ą c such that BB pθ, rq does not intersect Cupτq; see Figure 4.1 right panel. For
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such pθ, rq, the argument based on chord lengths no longer applies. However, when

ρ ě 0, BBpθ, rq is sufficiently close to S´
0 pτq, and we can show that BB

`

pθ1, θ2q, r
˘

Ď

Spτ, cq.

Next, we present the asymptotic results for general data generating processes.

Assumption 4.1. Suppose that

1. ∇2gpθ‹q has full rank.

2. Let BL1 denote the set of Lipschitz functions which are bounded by 1 in absolute

value and have Lipschitz constant bounded by 1. Assume there exists rn Ñ 8

such that

lim
nÑ8

sup
PPP

sup
fPBL1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

EP

«

f

ˆ

?
rn

´

θ̂ ´ θP

¯

˙

ff

´ EP

“

f pξP q
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0,

where ξP „ Np0,ΣP q.

3. Let S denote the set of matrices with eigenvalues bounded below by e ą 0 and

above by ē ě e. For all P P P, ΣP P S.

4. For all ε ą 0,

lim
nÑ8

sup
PPP

P

ˆ

›

›

›
Σ̂ ´ ΣP

›

›

›
ą ε

˙

“ 0.

Assumption 4.1.1 assumes that the second order derivative of g at θ‹ is of full rank,

so that there is no higher order degeneracy. Assumption 4.1.2 requires that the re-

searcher has access to an estimator θ̂ that is uniformly asymptotically normal over the

class of DGPs considered while Assumption 4.1.3 and Assumption 4.1.4 require that

the asymptotic variance of this estimator is well-behaved and consistently estimable.

Since degeneracy is a property of the transformation of interest, g, rather than of

the primitive parameter θ, these are mild conditions that can be verified for most

common estimators θ̂.

Theorem 4.1. Suppose d “ 2, and let c “
a

Qpχ2
1, 1 ´ αq. Let pλP,1, λP,2q be the

eigenvalues of sign
`

gpθP q ´ gpθ‹q
˘

Σ
1{2
P HΣ

1{2
P , and define ρP “

λP,1`λP,2

|λP,1´λP,2|
. Assume



Minimum Distance Based Inference Page 24

that Assumptions 3.2 and 4.1 hold. If for some η ą 0, it holds that either

Pn Ď

$

’

&

’

%

P P P :
p1 ´ ρP q

b

ˇ

ˇλP,1 ´ λP,2
ˇ

ˇ

2rn

b

ˇ

ˇgpθP q ´ gpθ‹q
ˇ

ˇ p1 ` ρP q

ď
1

c
, ρP P rη ´ 1, 1 ´ ηs

,

/

.

/

-

(4.2)

or

Pn Ď
␣

P P P : ρP P r0, 1 ´ ηs
(

, (4.3)

then

lim inf
n

inf
PPPn

P
´

T̂n
`

gpθP q
˘

ď c2
¯

ě 1 ´ α.

Theorem 4.1 follows from Proposition 4.1. To see this, let g̃phq “ g
´

θ‹ ` r´1
n Σ1{2h

¯

,

where rn governs the rate at which θ is estimated and Σ adjusts for the covariance.

For h “ Op1q, g̃phq can be approximated by a hyperbola, as in (4.1). Condition (4.2)

ensures that the curvature of g̃phq is not too large, while (4.3) implies that the two

branches of the hyperbola are sufficiently close. The result remains uniformly valid

even as }h} Ñ 8.

Remark 4.1. To illustrate Theorem 4.1, consider gpθq “ θ1θ2, as motivated by Exam-

ple 2.1. In this case, H “

«

0 1

1 0

ff

. With ΣP “

«

σ2
1 rσ1σ2

rσ1σ2 σ2
2

ff

, we have λP,1 “

sign
`

gpθP q
˘

pr ´ 1qσ1σ2, λP,2 “ sign
`

gpθP q
˘

pr ` 1qσ1σ2, and ρP “ sign
`

gpθP q
˘

r.

Therefore, (4.3) holds when r “ 0, and the MD test with the simple critical value

yields a uniformly valid confidence interval for the mediation effect. It is worth not-

ing that, the rejection region for θ1θ2 “ 0 is given by min
!

|θ̂1|, |θ̂2|

)

ą Qpχ2
1, 1 ´ αq,

which coincides with the rejection region of the likelihood ratio test. The latter is the

uniformly most powerful invariant test among information- and size-coherent tests

(van Garderen and van Giersbergen (2022)). If sign
`

gpθP q
˘

r ă 0, then (4.2) is satis-

fied when
?
σ1σ2p1`|r|q

rn

b

2p1´|r|q|gpθP q|
ď 1

c
. Since σ1, σ2 and r can be consistently estimated, and

gpθP q is known under H0, conditions (4.2) and (4.3) are straightforward to verify in

practice.
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4.2 General Cases

In this section, we present the inference procedure for a general function g. The

procedure is based on a local approximation of the test statistic. First, consider the

case where the true parameter value θn satisfies θn “ θ‹ ` hn{rn. Under H0, the test

statistic is given by

T̂npgpθnqq “ inf
ϑ:gpϑq“gpθnq

r2n

´

θ̂ ´ ϑ
¯1

Σ̂´1
´

θ̂ ´ ϑ
¯

“ r2n

›

›

›
Σ̂´1{2

pθ̂ ´ θ̃nq

›

›

›

2

where θ̃n denotes the minimizer. Since T̂npgpθnqq ď r2n

›

›

›
Σ̂´1{2pθ̂ ´ θnq

›

›

›

2

“ Opp1q, we

have θ̃n “ θn`Opp 1
rn

q. If hn “ Op1q, a second order Taylor expansion of gpθ̃nq “ gpθnq

gives

r2npθ̃n ´ θ‹q
1Hpθ̃n ´ θ‹q “ h1

nHhn ` opp1q.

In addition, let Zn “ rnΣ̂
´1{2pθ̂ ´ θnq, we can write

rnΣ̂
´1{2

pθ̂ ´ θ̃nq “ rnΣ̂
´1{2

´

pθ̂ ´ θnq ` pθn ´ θ‹q ´ pθ̃n ´ θ‹q

¯

“ Zn ` Σ̂´1{2
´

hn ´ rnpθ̃n ´ θ‹q

¯

.

In sum, let t “ rnpθ̃n ´ θ‹q, given hn, we can approximate T̂n by

T̂ ˚
n phnq “ inf

t:t1Ht“h1
nHhn

›

›

›
Z ` Σ̂´1{2

phn ´ tq
›

›

›

2

(4.4)

where Z|T̂npgpθnqq „ Np0, Idq. We can show that T̂npgpθnqq and T̂ ˚
n phnq have the same

asymptotic distribution, regardless of whether hn converges to h P R or diverges

to infinity (Lemmas B.7 and B.8). Intuitively, if hn Ñ 8, the restriction for the

optimizer t̃ in (4.4) is approximately linear. In this case, both T̂npgpθnqq and T̂ ˚
n phnq

are approximated χ2
1.

Given hn, we can easily get the quantile of T̂ ˚
n phnq by simulation. However, hn is a

nuisance parameter that cannot be consistently estimated. Next, we propose a two

step feasible critical value. Suppose set Hz satisfies P
`

Np0, Idq P Hz

˘

“ 1 ´ η.1 In

1For instance, Hz “ tz P Rd : z1z ď Qpχ2
d, 1 ´ ηqu.
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the first step, we construct a p1 ´ ηq confidence set for hn,

H “ rnpθ̂ ´ θ‹q ´ Σ̂1{2Hz. (4.5)

In the second step, we construct the critical value based on the 1´α
1´η

quantile of T̂ ˚
n phq

conditional on the first step. That is, let

ĉ “ sup
hPH

Q

ˆ

T̂ ˚
n phq

ˇ

ˇ

ˇ
Z P Hz;

1 ´ α

1 ´ η

˙

, (4.6)

and reject H0 : gpθq “ τ if T̂npτq ą ĉ. In (4.6), the construction of ĉ takes into account

the first step selection, thus it is less conservative than simple Bonferroni correction.

Theorem 4.2. Under Assumptions 3.2 and 4.1, it holds that

lim inf
n

inf
PPP

P
´

T̂npgpθPnqq ď ĉ
¯

ě 1 ´ α.

In addition, if
›

›rnpθPn ´ θ‹q
›

› Ñ 8,

lim
n
Pn

´

T̂npgpθPnqq ď ĉ
¯

P r1 ´ α, 1 ´ α ` ηq . (4.7)

The slight conservativeness arises from the two-step procedure. Alternatively, we can

introduce a pretest to check whether hn is far away from zero, e.g. ||hn|| ą ln rn. If

so, we can use the standard critical value Qpχ2
1, 1 ´ αq. The cost is that we need to

introduce an extra tuning parameter.

Remark 4.2. In general, if H is singular and g is higher order identified, we can

construct the critical value using a similar two step procedure. In the first step, we

construct a 1 ´ η confidence set Θ̂ for θ. In the second step, we define the critical

value as

ĉ “ sup
θPΘ̂

Q

ˆ

inf
ϑ:gpϑq“gpθq

›

›

›
Z ` rnΣ̂

´1{2
pθ ´ ϑq

›

›

›

2

; 1 ´ α ` η

˙

.

H0 : gpθq “ τ is rejected if T̂npτq ą ĉ.

Remark 4.3. Dufour et al. (2025) show that when g is a vector-valued function and

the degree of singularity differs across elements of g, the Wald-type test statistic may

diverge, complicating inference. In contrast, the MD test considered in this paper
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yields a test statistic that is first-order stochastically dominated by χ2
d, regardless of

the level of singularity in g. Moreover, Dufour et al. (2025) focus solely on hypothesis

tests at a fixed point, i.e., testing gpθq “ gpθ‹q, whereas this paper aims to construct

uniformly valid confidence intervals.

Remark 4.4. Andrews and Mikusheva (2016) construct a uniformly valid MD test

based on a geometric approach that incorporates the curvature of the null restriction

gpθq “ τ . When the curvature is large, their procedure may yield overly conservative

critical values. For example, consider the mediation analysis problem in Examples 2.1

where one is interested in testing the null hypothesis H0 : θ1θ2 “ τ . As τ approaches

zero, the curvature of the null manifold can be made arbitrarily large and the critical

value of Andrews and Mikusheva (2016) approaches Qpχ2
2, 1´αq. However, as shown

in Section 4.1 of this paper, a uniformly valid critical value in this setting is Qpχ2
1, 1´

αq. Indeed, even when τ is far from zero, the Andrews and Mikusheva (2016) critical

value is always larger than Qpχ2
1, 1 ´ αq.

5 Simulation

In this section, we examine the size and power properties of the proposed procedures

and compare them with several alternatives. We focus on the context of Example 2.1,

namely the construction of confidence intervals for the mediation effect. In addition to

the two MD-based methods proposed in Section 4, one using the Qpχ2
1, 1´αq critical

value (BN1; Section 4.1) and one using a bootstrapped critical value (BN2; Section

4.2), we consider two uniformly valid MD-based alternatives: (i) the procedure of

Andrews and Mikusheva (2016) (AM),1 and (ii) the MD-based method with projection

critical value Qpχ2
2, 1 ´ αq. For comparison, we also include the naive delta method,

i.e. a Wald-type test with critical value Qpχ2
1, 1 ´ αq, and a naive bootstrap method.

The nominal rejection rate is α “ 0.05, and the tuning parameter for BN2 is η “ α{10.

We study confidence intervals for gpθq “ θ1θ2, where the estimators are simulated

1We report results using their Section 4.1 implementation, which computes curvature over a
restricted set with tuning parameter η “ α{10. We also implemented their worst-case curvature
procedure from Section 2. The two procedures have nearly identical power, with the latter performing
slightly worse.
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from

θ̂ ´ θ „ N

¨

˝0,

«

1 r

r 1

ff

˛

‚.

Without loss of generality, we normalize the variance of θ̂ to one. We consider r “ 0

and r “ 0.5, with θ2 P t2, 6u and θ1 “ r´1 : 0.2 : 1s ˆ θ2.

In Figure 5.1a, we plot the probability that the confidence intervals exclude the true

value gpθq. The naive method does not overreject when θ1θ2 “ 0, but its rejection

probability is very low near the origin, consistent with earlier findings (e.g., Dufour

et al. (2025)). Away from the origin (see, e.g., θ1 “ θ2 “ 2), the naive Wald test

overrejects. According to Remark 4.1, BN1 is valid for r “ 0. For r “ 0.5, Theorem

4.1 does not guarantee validity when θ1 ă 0, θ2 “ 2, or when θ1 P r´1.4, 0q, θ2 “ 6.

Nevertheless, BN1 maintains correct size across all designs, even when these condi-

tions fail, suggesting that the condition is sufficient but not necessary. As expected,

all other MD-based methods control size.

Figure 5.1b shows the probability that the confidence intervals exclude zero, i.e., the

probability of obtaining a significant result. When θ is close to the origin (θ2 “ 2),

our methods have substantially higher power than AM, whose performance is close

to that of the simple projection method. When θ is further from the origin (θ2 “ 6),

power curves across methods are nearly identical.

Finally, Figure 5.1c reports the median length of the confidence intervals, computed

across S replications. BN1 consistently yields the shortest intervals, with BN2 close

behind. The projection method is the most conservative, producing intervals 19–30%

longer than BN1. AM lies between BN1 and the projection method, with median

lengths 5–18% longer than those of BN1. The differences are most pronounced when

θ is near the origin.

6 Empirical Application

We illustrate the empirical relevance of our results using the setting analyzed by

Alan et al. (2018). Their study takes advantage of a distinctive feature of the Turkish

education system, in which elementary school teachers are randomly allocated across
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schools. This institutional detail generates plausibly exogenous variation in teacher

characteristics that can be used to study how teachers’ gender role attitudes influence

student outcomes. The data include roughly 4,000 third- and fourth-grade students

taught by 145 teachers, and students can be grouped according to the length of their

exposure to a given teacher — at most one year, two to three years, or up to four

years. The treatment variable is whether a teacher is identified as holding traditional

rather than progressive gender beliefs, while the mediator of interest is the student’s

own gender role beliefs. Following a similar analysis of this data in van Garderen and

van Giersbergen (2024), we focus on verbal test scores as the outcome. Alan et al.

(2018) argue that, after controlling for an extensive set of student, family, teacher,

and school characteristics, the identifying assumptions for causal mediation analysis

are satisfied in this context.

Exposure θ̂1 tpθ̂1q θ̂2 tpθ̂2q θ̂1 ¨ θ̂2 n

Full sample 0.199 3.140 -0.119 -5.343 -0.024 1885
1 year 0.256 2.052 -0.097 -1.941 -0.025 499
2–3 years 0.109 1.065 -0.125 -4.163 -0.014 906
4 years 0.064 0.513 -0.113 -1.931 -0.007 468

Table 1: Estimates of Mediation Effects by Teacher Exposure

Table 1 reports estimates from the Alan et al. (2018) analysis linking teachers’ gender

role attitudes to students’ verbal test performance. The first coefficient, θ̂1, comes

from a regression of students’ gender role beliefs on the gender role attitudes of their

teachers, with the standard set of student, family, teacher, and school controls in-

cluded. This coefficient summarizes the extent to which traditional teachers transmit

their views to students. The second coefficient, θ̂2, is estimated from a regression of

test scores on both student gender beliefs and teacher attitudes, again with the full

set of controls. It reflects how student beliefs are associated with verbal performance

once teacher attitudes are held constant. Multiplying these two coefficients gives the

mediated, or indirect, effect: the part of the teacher’s influence on scores that oper-

ates through the channel of student beliefs. The estimates show that this indirect

pathway is negative and relatively small, although it varies across exposure groups,

being largest in the one-year sample and smallest for students exposed for four years.

Because the true mediation, or indirect, effect appears to be close to zero, the results

of Section 3 suggest that standard approaches to inference will fail. In particular,
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we cannot construct valid confidence intervals via the typical approach of inverting a

t-test. Instead, we construct confidence intervals using the newly proposed methods

of Section 4. van Garderen and van Giersbergen (2024) show that the correlation

coefficient between θ̂1 and θ̂2 is zero; consequently, both of our methods are uniformly

valid.1

Exposure Full 1-Year 2-3 Year 4 Year

Point Estimate ´0.024 ´0.025 ´0.014 ´0.007

ÐÝ Interval LengthÝÑ

95% BN1 CI
ÐÝ 0.032ÝÑ

r´0.042,´0.010s

ÐÝ 0.070ÝÑ

r´0.071,´0.001s

ÐÝ 0.053ÝÑ

r´0.042, 0.010s

ÐÝ 0.070ÝÑ

r´0.045, 0.025s

95% BN2 CI
ÐÝ 0.034ÝÑ

r´0.044,´0.010s

ÐÝ 0.076ÝÑ

r´0.075, 0.001s

ÐÝ 0.058ÝÑ

r´0.046, 0.012s

ÐÝ 0.076ÝÑ

r´0.049, 0.027s

95% AM CI
ÐÝ 0.038ÝÑ

r´0.046,´0.008s

ÐÝ 0.086ÝÑ

r´0.083, 0.003s

ÐÝ 0.068ÝÑ

r´0.052, 0.016s

ÐÝ 0.094ÝÑ

r´0.059, 0.035s

95% Projection CI
ÐÝ 0.042ÝÑ

r´0.048,´0.006s

ÐÝ 0.092ÝÑ

r´0.085, 0.007s

ÐÝ 0.070ÝÑ

r´0.052, 0.018s

ÐÝ 0.096ÝÑ

r´0.059, 0.037s

Table 2: Mediation Effect in the data of Alan et al. (2018)
Confidence Intervals are generated by inverting the corresponding tests. Values are rounded to three significant figures.

We compare our confidence intervals to two other inference procedures that might be

applied in this setting, both of which are based on the minimum distance statistic.

The first alternate procedure is that of Andrews and Mikusheva (2016).2 This testing

procedure technically does not cover the case where we are testing the null that the

mediation effect is equal to zero since the null manifold is not smooth in this case.

However, the Andrews and Mikusheva (2016) critical value approaches Qpχ2
2, 1 ´ αq

from below as the null hypothesis value approaches zero and Qpχ2
2, 1 ´ αq is a valid

critical value for testing the null that the mediation effect is equal to zero so we simply

modify the procedure slightly to directly use a Qpχ2
2, 1 ´ αq when the null value is

equal to zero. The second method, “Projection”, simply uses the Qpχ2
2, 1 ´ αq at all

points, which is justified since, under the null hypothesis, the distance to the null

manifold is always less than the distance to the point pθ1, θ2q
1.

Consistent with the discussion in Section 4, the confidence intervals based on either

the χ2
1 critical value (BN1) or the two-step procedure (BN2) are uniformly tighter

1The validity of BN1 follows from Remark 4.1.
2In implementing the test, we follow the empirical application in the working paper version of

Andrews and Mikusheva (2016) and only calculate the maximum curvature over a set “close” to the
point estimate, adjusting the critical value accordingly.
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than those obtained from the Andrews and Mikusheva (2016) simulated critical value

(AM); in all specifications, our intervals are strict subsets of theirs. The difference

is not only theoretical but also empirically relevant. Using the χ2
1 critical value, for

instance, the BN1 confidence interval supports the conclusion of van Garderen and

van Giersbergen (2024) that the mediation effect of a one-year exposure to a teacher

with traditional views is negative, whereas the alternative methods cannot reject

a null of zero at the five-percent level. As expected, the AM intervals lie strictly

inside those generated by the projection method, which uses a χ2
2 critical value at

all points. However, because the true mediation effect appears small in this setting,

their simulated critical value converges toward Qpχ2
2, 1 ´ αq, which accounts for the

close similarity between the two sets of intervals.

7 Conclusion

We examine inference in local regions of first-order degeneracy, meaning that the gra-

dient of the transformation is zero or nearly zero so that first-order approximations

alone do not provide reliable information and second-order terms must also be con-

sidered. In such regions of local degeneracy, we show that neither regular estimation

nor quantile-unbiased procedures are feasible, paralleling impossibility results for non-

differentiable functionals and ruling out standard approaches to inference. We then

develop alternate inference procedures based on minimum-distance statistics that

deliver uniformly valid confidence intervals. Simulation studies indicate that these

procedures control size while maintaining favorable power, and the empirical appli-

cation to teacher gender attitudes shows that they yield tighter confidence intervals

than existing approaches.
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A Proofs and Supporting Results for Section 3

Proof of Proposition 3.1.

Proof. Define Sn “ r2npΨn ´ gpθ‹qq. Via a second order Taylor expansion, we have

Sn “ r2npΨn ´ gpθ‹qq

“ r2npΨn ´ gpθ‹ ` h{rnqq ` r2npgpθ‹ ` h{rnq ´ gpθ‹qq

h
ù Lh `

1

2
h1∇2gpθ‹qh

where in the last line we use the fact that equation (3.4) holds for any h P Rd by

hypothesis. Since the experiment tPθ : θ P Θ˝u satisfies Assumption 3.1 with non-

singular Fisher information Γθ‹
, by Theorem 7.10 in van der Vaart (1998) there is

a randomized statistic ΨpX,Uq in the Gaussian shift experiment tNph,Γ´1
θ‹

q : h P

Rdu such that ΨpX,Uq has distribution Lh ` 1
2
h1∇2gpθ‹qh when X „ Nph,Γ´1

θ‹
q.

Equivalently, ΨpX,Uq ´ 1
2
h1∇2gpθ‹qh

h
„ Lh.

Proof of Proposition 3.2.

Proof. (a) We proceed by contradiction, assuming there is an equivariant in law

estimator. The characteristic function of the recentered estimator is given by

ψpsq “ EhrexppispΨpZ,Uq ´ h1Jhqqs (A.1)

where, by assumption, ψpsq does not depend on h. Let Φhpsq “ EhrexppisΨpZ,Uqqs

and notice that (A.1) implies that we can decompose ψpsq exppisfphqq “ Φhpsq where

we let fphq “ h1Jh to save notation. We start by showing that Φhpsq is twice

continuously differentiable in h and deriving expressions for the derivatives.

For the first derivative, consider a point h0 P Rd and a deviation in the direction h of

size r. We save notation by letting Γ “ Γθ‹
and justify bringing the limit inside the

integral by the uniform integrability condition of Hirano and Porter (2012), Lemma

1(b).

lim
rÓ0

1

r

“

Φh0`rhpsq ´ Φh0psq
‰
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“ lim
rÓ0

1

r

ż

r0,1s

ż

exppisΨpz, uqqtϕpz|h0 ` rh,Γ´1
q ´ ϕpz|h0,Γ

´1
u dz du

“

ż

r0,1s

ż

exppisΨpz, uqq lim
rÓ0

1

r
tϕpz|h0 ` rh,Γ´1

q ´ ϕpz|h0,Γ
´1

qu dz du

“

ż

r0,1s

ż

exppisΨpz, uqqpz ´ h0q
1Γhϕpz|h0,Γ

´1
q dz du

“Eh0rexppisΨpZ,UqqpZ ´ h0q
1
sΓh

Since h is arbitrary here, we can rewrite the above as

∇Φh0psq “ Eh0rexppisΨpZ,UqqpZ ´ h0q
1
sΓ

where the gradient is understood to be with respect to the argument h0, i.e s is

kept fixed. For the second derivative, we repeat the argument, again letting h be an

arbitrary direction in Rd and justifying bringing the limit into the integral via Hirano

and Porter (2012), Lemma 1(b) along with the fact that Eh0r} exppisΨqpZ ´ h0q}s is

uniformly bounded over h0:

lim
rÓ0

1

r

“

∇Φh0`rhpsq ´ ∇Φh0psq
‰

“ lim
rÓ0

1

r

!

ż

r0,1s

ż

exppisΨpz, uqqpz ´ h0q
1Γtϕpz|h0 ` rh,Γ´1

q ´ ϕpz|h0,Γ
´1

qu dz du

´

ż

r0,1s

ż

exppisΨpz, uqqrh1Γϕpz|h0 ` rh,Γ´1
q dz du

)

“

ż

r0,1s

ż

exppisΨpz, uqqpz ´ h0q
1 lim
rÓ0

1

r
Γtϕpz|h0 ` rh,Γ´1

q ´ ϕpz|h0,Γ
´1

qu dz du

´

ż

r0,1s

ż

exppisΨpz, uqqh1Γ lim
rÓ0

ϕpz|h0 ` rh,Γ´1
q dz du

)

“ h1Γ

ż

r0,1s

ż

exppisΨpz, uqqpz ´ h0qpz ´ h0q
1 ϕpz|h0,Γ

´1
q dz duΓ

´ h1Γ

ż

r0,1s

ż

exppisΨpz, uqqϕpz|h0,Γ
´1

q dz du

“ h1ΓEh0rexppisΨpZ,UqqpZ ´ h0qpZ ´ h0q
1
sΓ ´ h1ΓEh0rexppisΨpZ,Uqqs

Again, since h is arbitrary we can write this

∇2Φh0psq “ ΓEh0rexppisΨpZ,UqqpZ ´ h0qpZ ´ h0q
1
sΓ ´ Φh0psqΓ (A.2)
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The first and second derivatives of exppisfph0qq with respect to h0 can be expressed

∇ exppisfph0qq “ 2is exp
`

isfph0q
˘

Jh0

∇2 exp
`

isfph0q
˘

“ exp
`

isfph0q
˘ `

2isJ ´ 4s2pJh0qpJh0q
1
˘

(A.3)

Recall that, by assumption, Φh0psq “ ψpsq exppisfph0qq for all h0. Pick an s ‰ 0 such

that ψpsq ‰ 0. This is possible since ψp0q “ 1 and ψp¨q is continuous. Combining

(A.2) and (A.3) yields, for any h0, that

ψpsq exp
`

isfph0q
˘ `

2isJ ´ 4s2pJh0qpJh0q
1
˘

“ΓEh0rexppisΨpZ,UqqpZ ´ h0qpZ ´ h0q
1
sΓ ´ Φh0psqΓ

(A.4)

Notice that since | exppisΨpz, uqq| “ 1 and |Φh0psq| ď 1 for all h0, the operator norm

of the RHS of (A.4) is bounded uniformly over h0 P Rd. On the other hand, looking

at the LHS of (A.4) we can see, using }A ` B} ě }B} ´ }A}, that

}LHS} ě |ψpsq|
`

4s2}Jh0}
2

´ 2|s|}J}
˘

.

Let v be such that }Jv} ‰ 0 and let h0 “ cv for some c ą 0 so that }Jh0}
2 “

c2}Jv}2. By sending c Ñ 8 we can thus make }LHS} arbitrarily large, leading to a

contradiction since }RHS} is uniformly bounded over h0 P Rd.

(b) Let h be such that h1Jh ‰ 0. Since J is assumed symmetric and non-zero, it is

guaranteed that such an h exists. For any r ě 0, we have that

α “ Pp1`rqhpΨpZ,Uq ď pp1 ` rqhq
1Jpp1 ` rqhqq

In particular,

0 “ α ´ α “ Pp1`rqhpΨpZ,Uq ď pp1 ` rqhq
1Jpp1 ` rqhqq ´ PhpΨpZ,Uq ď h1Jhq

and thus

0 “ lim
rÓ0

"

1

r

”

Pp1`rqhpΨpZ,Uq ď p1 ` rq2h1Jh ´ Ph

`

ΨpZ,Uq ď p1 ` rq2h1Jh
˘

ı

`
1

r

”

Ph

`

ΨpZ,Uq ď p1 ` rq2h1Jh
˘

´ Ph

`

ΨpZ,Uq ď h1Jh
˘

ı

*

(A.5)
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Letting Fhpxq “ PhpΨpZ,Uq ď xq and applying the uniform integrability in Lemma

1(a) of Hirano and Porter (2012) to justify exchanging limits and integrals as in the

proof of Lemma A.1, we obtain for any h

h1Γθ‹
Ehr1tΨpX,Uq ď h1JhupX ´ hqs “ 2ph1JhqF 1

hph1Jhq

From here, take a constant c ą 0 and consider the behavior of the LHS and RHS as

c Ñ 8. Notice that for any c ą 0 }ch1Γθ‹
} À c while }Ehr1tΨpX,Uq ď h1JhupX ´

hqs} À 1 by Cauchy-Schwarz. Meanwhile, 2ppchq1Jpchqq9c2F 1
chppchq1Jpchqq. Recall

Fhph1Jhq “ PhpΨpZ,Uq´h1Jh ă“ 0q and ΨpZ,Uq´h1Jh „ Lh, Fhph1Jhq corresponds

to the CDF of Lh evaluated at zero. By assumption, there exists an ϵ ą 0 such that

F 1
hph1Jhq ě ϵ for all h. Since c2F 1

chppchq1Jpchqq Ñ 8 as c Ñ 8 we arrive at a

contradiction.

Proof of Theorem 3.1.

Proof. Theorem 3.1 follows directly from Proposition 3.1 along with Proposition 3.2.

Proof of Proposition 3.3.

Proof. The first claim follows immediately from the definition of similarity as well as

the fact that Pphq is differentiable at zero. For the second claim, it suffices to show

that for an indefinite symmetric dˆ d real matrix J the isotropic set HJ “ th P Rd :

h1Jh “ 0u spans Rd. To do so, let us diagonlize J “ QΛQ1 where Q is orthogonal

satisfying Q1Q “ I and Λ “ diagpλ1, . . . , λdq is a d ˆ d diagonal matrix containing

the eigenvalues of J . Because Q is orthogonal, it suffices to show that the isotropic

set of Λ, HΛ “ th P Rd : h1Λh “ 0u spans Rd.

Without loss of generality, let us assume that λ1 ą 0 and λ2 ă 0. Let e1, . . . , ed

denote the standard basis vectors in Rd. We wish to show that each ej P spanpHΛq

for j “ 1, . . . , d. If λj “ 0 then trivially ej P HΛ Ď spanpHΛq. Suppose that λj ą 0.

Define tj “ p´λj{λ2q1{2. Consider u`
j “ ej ` tje2 and u´

j “ ej ´ tje2. Then, notice

that

u`
j Λu

`
j “ λj ` t2jλ2 “ 0 and u´

j Λu
´
j “ λj ` t2jλ2 “ 0
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so that u`
j P HΛ and u´

j P HΛ. Since ej “ 1
2
pu`

j ` u´
j q it follows that ej P spanpHΛq.

The case where λj ă 0 follows symmetrically.

The claim in Remark 3.3 follows from Lemma A.3.

Proof of Corollary 3.1

Proof. Follows directly from Theorem 3.1.

Lemma A.1. Suppose that ΨpZ,Uq is a statistic in the Gaussian shift experiment

tNph,Γ´1
θ‹

q : h P Rdu and let H Ď Rd be a cone such that, for some α P p0, 1q,

α “ Ph

ˆ

ΨpZ,Uq ď
1

2
h1∇2gpθ‹qh

˙

, for all h P H.

Let FΨp¨q denote the CDF of ΨpZ,Uq under h “ 0. Assume that the derivative of FΨ

exists at zero. Then h1Γθ‹
E0r1tΨpZ,Uq ď 0uZs “ 0 for all h P H.

Proof. The proof of the following lemma closely follows that of Proposition 1(c) in

Hirano and Porter (2012). To simplify notation, let J “ 1
2
∇2gpθ‹q. For any r ě 0 we

have that

α “ Prh

`

ΨpZ,Uq ď prhq
1Jprhq

˘

.

Evaluating the above expression at r ą 0 and r “ 0 yields

0 “ α ´ α “ Prh

`

ΨpZ,Uq ď prhq
1Jprhq

˘

´ P0pΨpZ,Uq ď 0q.

and thus

0 “ lim
rÓ0

"

1

r

”

PrhpΨpZ,Uq ď prhq
1Jprhqq ´ P0

`

ΨpZ,Uq ď prhq
1Jprhq

˘

ı

`
1

r

”

P0

`

ΨpZ,Uq ď prhq
1Jprhq

˘

´ P0

`

ΨpZ,Uq ď 0
˘

ı

*

.

(A.6)

Each of the terms on the RHS of (A.6) exist, so we can write the limit of the sum

as the sum of the limits. Let ϕp¨|µ,Σq denote the pdf of a normal distribution with

mean µ and variance Σ. Consider the first term. Applying the uniform integrability

condition in Lemma 1(a) of Hirano and Porter (2012) to justify interchanging limits
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and integrals below, we obtain

lim
rÓ0

1

r

“

PrhpΨpZ,Uq ď prhq
1Jprhqq ´ P0pΨpZ,Uq ď prhq

1Jprhqq
‰

“ lim
rÓ0

ż

r0,1s

ż

1
␣

Ψpz, uq ď prhq
1Jprhq

(

ˆ
1

r
rϕpz|rh,Γ´1

θ‹
q ´ ϕpz|0,Γ´1

θ‹
qs dz du

“

ż

r0,1s

ż

lim
rÓ0

1
␣

Ψpz, uq ď prhq
1Jprhq

(

ˆ
1

r
rϕpz|rh,Γ´1

θ‹
q ´ ϕpz|0,Γ´1

θ‹
qs dz du

“

ż

r0,1s

ż

1tΨpz, uq ď 0u

ˆ

B

Bh̃
ϕpz|h̃,Γ´1

θ‹

˙

h̃“0

h dz du

“ h1Γθ‹

#

ż

r0,1s

ż

1tΨpz, uq ď 0uzϕpz|0,Γ´1
θ‹

q dz du

+

Since the derivative of FΨp¨q at zero exists and B

Br
prhq1Jprhq

ˇ

ˇ

r“0
“ 0, the second term

on the RHS of (A.6) evaluates to zero. Thus, we obtain for any h ‰ 0 that

0 “ h1Γθ‹

#

ż

r0,1s

ż

1tΨpz, uq ď 0uzϕpz|0,Γ´1
θ‹

q dz du

+

which gives the result.

Lemma A.2. Let ΨpZ,Uq be a statistic in the Gaussian shift experiment tNph,Γ´1
θ‹

q, h P

Rdu such that for (i) for some α P p0, 1q and cone H Ă Rd,

α “ Ph

ˆ

Ψ ď
1

2
h1∇2gpθ‹qh

˙

for all h P H,

and (ii) the CDF of ΨpZ,Uq under h “ 0, FΨp¨q is differentiable at zero. Consider

the level α test based on T , that is the test that rejects if ΨpZ,Uq ď 0. Define

Pphq “ PhpΨpZ,Uq ď 0q the power curve for this test. This power curve is flat

around zero in the direction h in the sense that DhPp0q exists and is equal to zero.

Proof. Consider a deviation in the direction h. Define Phprq “ PrhpΨpZ,Uq ď 0q.

We want to show that

B

Br
Phprq

ˇ

ˇ

r“0
“ lim

rÓ0

PrhpΨpZ,Uq ď 0q ´ P0pΨpZ,Uq ď 0q

r
“ 0

Let us expand the above limit and, as in the proof of Lemma A.1, invoke Lemma 1(a)
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in Hirano and Porter (2012) to justify exchanging a limit and an integral below.

B

Br
Phprq

ˇ

ˇ

r“0
“ lim

rÓ0

ż

r0,1s

ż

1tΨpz, uq ď 0u ˆ
1

r
rϕpz|rh,Γ´1

θ‹
q ´ ϕpz|0,Γ´1

θ‹
qs dz du

“

ż

r0,1s

ż

1tΨpz, uq ď 0u ˆ lim
rÓ0

1

r
rϕpz|rh,Γ´1

θ‹
q ´ ϕpz|0,Γ´1

θ‹
qs dz du

“ h1Γθ‹

ż

r0,1s

ż

1tΨpz, uq ď 0uzϕpz|0,Γ´1
θ‹

q dz du

“ h1Γθ‹
E0r1tΨpZ,Uq ď 0uZs

“ 0

where the final equality comes from Lemma A.1.

Remark A.1. The proof of Lemma A.2 could be obtained almost directly from the

proof of Lemma A.1. However, the statement of Lemma A.1 additionally implies

that Cov0p1tΨpZ,Uq ď 0u, Zq “ 0, which is also an interesting restriction on any

α-quantile unbiased estimate.

Lemma A.3. Suppose Assumption 3.1 holds at θ‹ with Fisher information Γθ‹
. Let

Ψn be a real-valued statistic and consider the test Ξn “ 1tΨn ě 0u. Let P be the local

asymptotic power curve defined in (3.6). Suppose that Ψn
h

ù Lh for each h P Rd, and

let F0 be the CDF of L0. If F0 is continuous at zero, then Pphq “ limnÑ8 Pθn,h
pΞn “

1q for each h, P is differentiable at 0, and

∇Pp0q “ Γθ‹
E0

“

1tΨpZ,Uq ě 0uZ
‰

,

where Z „ Np0,Γ´1
θ‹

q, U „ Unifp0, 1q independently of Z, and ΨpZ,Uq is a ran-

domized statistic in the Gaussian shift experiment tNph,Γ´1
θ‹

q : h P Rdu such that

ΨpZ,Uq „ Lh for all h.

Proof. By Theorem 7.10 in van der Vaart (1998), there exists a randomized statistic

ΨpZ,Uq in the Gaussian shift experiment tNph,Γ´1
θ‹

q : h P Rdu such that ΨpZ,Uq „

Lh for all h. Since F0 is continuous at zero, P0pΨpZ,Uq “ 0q “ 0, and by mutual

absolute continuity of Nph,Γ´1
θ‹

q in h we also have PhpΨpZ,Uq “ 0q “ 0 for all h.
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Thus, by the Portmanteau theorem,

Pphq “ lim
nÑ8

Pθn,h
pΨn ě 0q “ PhpΨpZ,Uq ě 0q.

Fix h P Rd and define Gpz, uq “ 1tΨpz, uq ě 0u. For r P R, let Prh denote the law of

Z „ Nprh,Γ´1
θ‹

q. The likelihood ratio satisfies

dPrh

dP0

pZq “ exp
`

rh1Γθ‹
Z ´ 1

2
r2h1Γθ‹

h
˘

,

so Pprhq “ E0

”

GpZ,Uq exp
`

rh1Γθ‹
Z ´ 1

2
r2h1Γθ‹

h
˘

ı

. Differentiating at r “ 0 and

invoking Lemma 1(a) of Hirano and Porter (2012) to justify exchanging limits and

integrals we obtain:
B

Br
Pprhq

ˇ

ˇ

ˇ

ˇ

r“0

“ h1Γθ‹
E0

“

GpZ,UqZ
‰

.

Since the right-hand side is linear in h, P is differentiable at 0 with gradient ∇Pp0q “

Γθ‹
E0rGpZ,UqZs.

B Proofs for Section 4

B.1 Proofs of the Main Theorems

We first introduce notation for the results in Section 4.1. Let Cupcq and Cℓpcq be the

upper and lower boundaries of BS`pτ, cq,

Cupcq “

!

`

Cu,1px1, cq, Cu,2px1, cq
˘

: x1 P Rz p´x˚
1 , x

˚
1q

)

(B.1)

where

Cu,1px1, cq “ x1 ´
cp1 ´ ρqx1

a

p1 ` ρq2X2px1q2 ` p1 ´ ρq2x21
,

Cu,2px1, cq “ X2px1q `
cp1 ` ρqX2px1q

a

p1 ` ρq2X2px1q2 ` p1 ´ ρq2x21
,
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x˚
1 “

$

’

&

’

%

?
c2p1´ρq2´p1`ρqτ

?
2

?
1´ρ

if τ ď
c2p1´ρq2

1`ρ

0 otherwise
,

and the lower boundary is

Cℓpcq “

!

`

Cℓ,1px1, cq, Cℓ,2px1, cq
˘

: x1 P R
)

, (B.2)

where

Cℓ,1px1, cq “ x1 `
cp1 ´ ρqx1

a

p1 ` ρq2X2px1q2 ` p1 ´ ρq2x21
,

Cℓ,2px1, cq “ X2px1q ´
cp1 ` ρqX2px1q

a

p1 ` ρq2X2px1q2 ` p1 ´ ρq2x21
.

Details on the calculation of Cℓ and Cu are given in Lemma B.2.

If τ ď
c2p1´ρq2

1`ρ
, let the kink of Cupτ, cq be

K “

˜

0,

?
2
a

c2p1 ´ ρq ` τ
a

1 ´ ρ2

¸

. (B.3)

Let r̄pθ1q denote the distance between O “ pθ1, X2pθ1qq and K,

r̄pθ1q “ d
`

pθ1, X2pθ1qq, K
˘

. (B.4)

LetB
`

px1, x2q, r
˘

denote the ball centered at px1, x2q with radius r, and BB
`

px1, x2q, r
˘

its boundary (i.e. the circle). Let
"

AB be the arc from A to B, and AB the line seg-

ment.

Proof of Proposition 4.1.

Proof. This follows from Proposition B.1 and B.2.

Proposition B.1. Let τ ě
c2p1´ρq2

1`ρ
and |ρ| ă 1. For all θ “ pθ1, θ2q P S`

0 pτq,

pZ1, Z2q „ Np0, I2q,

P
`

pZ1 ` θ1, Z2 ` θ2q P S`
pτ, cq

˘

ě 1 ´ α.
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where

S`
pτ, cq “

␣

px1, x2q : px1 ´ θ1q
2

` px2 ´ θ2q
2

ď c2, pθ1, θ2q P S`
0 pτq

(

.

Proof. The proof is based on Lemma B.1, with S̄ “ S`pτ, cq. Condition 1 of Lemma

B.1 holds trivially. We now verify Condition 2 of Lemma B.1. Let r ą c. By Lemma

B.5, BB pθ, rq intersects S`
0 pτq at a minimum of two points I and J , with I to the

left of J . See Figure B.1. By Lemma B.4.1, there is a point P in BB pθ, rq above

curve Cupτ, cq. Therefore, there is at least one point on BB pθ, rq between P and I

that intersects Cupτ, cq. Let the closest point (if there’s more than one point) to I be

point A. Similarly, define B as the point on BB pθ, rq between P and J that intersects

Cupτ, cq and is closest to J . By Lemma B.4.2, there is a point Q on BB pθ, rq below

curve Cℓpτ, cq. Therefore, there is at least one point on BB pθ, rq between Q and I that

intersects Cℓpτ, cq. Let the closest point (if there’s more than one point) to I be point

C. Similarly define D between Q and J . Therefore, by construction
"

AIC Ă S`pτ, cq

and
"

BJD Ă S`pτ, cq.

To show that length

ˆ

"

AIC

˙

` length

ˆ

"

BJD

˙

ě 4r arcsin c
r
, it suffices to show that

length
´

AC
¯

ě 2c and length
´

BD
¯

ě 2c.

By contradiction, assume that length
´

AC
¯

ă 2c. Let AC intersects S`
0 pτq at point

G, then BpG, cq Ę S`pτ, cq, which contradicts the definition of S`pτ, cq. Therefore,

Condition 1 and 2 of Lemma B.1 hold, and

P
`

pZ1 ` θ1, Z2 ` θ2q P S`
pτ, cq

˘

ě 1 ´ α. (B.5)

This completes the proof.

Proposition B.2. Let 0 ă τ ă
p1´ρq2c2

1`ρ
and ρ P r0, 1q. For all θ “ pθ1, θ2q P S0pτq,

pZ1, Z2q „ Np0, I2q,

P
`

pZ1 ` θ1, Z2 ` θ2q P Spτ, cq
˘

ě 1 ´ α.

Proof. The proof is based on Lemma B.1 with S̄ “ Spτ, cq. WLOG, let θ P S`
0 pτq.
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Figure B.1: Illustration of Proposition B.1.
Red curves represent S`

0 pτq. Black dashed curves represent the boundaries of S`pτ, cq. “*” represents θ, and the blue

curves represent BBpθ, rq for some r ą c.

By Lemma B.4.1 and B.4.2, for all |θ1| ě x˚
1 , the coverage is at least 1 ´ α with the

same argument as in Proposition B.1.

For θ1 P p´x˚
1 , x

˚
1q. If r ą r̄pθ1q, where r̄pθ1q is defined in (B.4), BB pO, rq intersects

with Cu at least two points, since (i) by Lemma B.4.3,

inf
xPCu

d px, θq “ d pK, θq “ r̄pθ1q ă r,

(ii)

sup
xPCu,x1ą0

d px, θq “ sup
xPCu,x1ă0

d px, θq “ 8.

Therefore
ˇ

ˇ

ˇ
length

`

BB pθ, rq X S`
pτ, cq

˘

ˇ

ˇ

ˇ
ě 4r arcsin

c

r

following from the same argument in Proposition B.1.

Then we show that for r P pc, rpθ1qs,

ˇ

ˇ

ˇ
length

`

BB pθ, rq X S̄
˘

ˇ

ˇ

ˇ
“ 2πr ě 4r arcsin

c

r
. (B.6)

By Lemma B.4.4, BB pθ, rqXCℓpcqX
␣

p0, xq : x ě 0
(

“ H. By Lemma B.4.3, BB pθ, rqX

Cupcq “ H. Therefore, B pθ, rq X
␣

p0, xq : x ě 0
(

Ď S`pτ, cq. Case 1: if

B pθ, rq X
␣

p0, x2q : x2 ď 0
(

“ H,
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then (B.6) holds. Case 2: if Dpx1, 0q P BB pθ, rq, by Lemma B.6.2,

B pθ, rq X
␣

p0, xq : x ď 0
(

Ď S´
pτ, cq.

In sum, BB pθ, rq Ď Spτ, cq.

Proof of Theorem 4.1.

Proof. There exists a subsequence Pnj
P Pn such that

lim inf
n

inf
PPPn

P
´

T̂npgpθP qq ď c2
¯

“ lim
jÑ8

Pnj

´

T̂npgpθnj
qq ď c2

¯

where θn “ θPn .

Since Θ is compact, the sequence tθnj
u is bounded and thus has a further subsequence

nj1 such that limnj1 θnj1 “ θ8 P Θ, limnj1 rnj1 pθnj1 ´ θ‹q “ h P R2
r˘8s

, limnj1 RPnj
“

R, and ρPn Ñ ρ. With slight abuse of notation, we will refer to this convergent

subsequence as tθnu from here on. In addition, we use n instead of Pn for subscript

in λ,R, and ρ.

Case 1. If limn θn “ θ8 ­“ θ‹, standard minimum distance arguments (see, for example

Section 9.1 in Newey and McFadden (1994)) imply that

lim
n
Pn

´

T̂npgpθnqq ď Qpχ2
1, 1 ´ αq

¯

ě 1 ´ α.

Case 2. Suppose θ8 “ θ‹ and limn rnpθn ´ θ‹q “ h P R2. We first normalize the

problem to match the notation in Proposition 4.1. WLOG, assume λn,2 ě λn,1.

There exists an orthogonal matrix Rn such that

signpgpθnq ´ gpθ‹qqΣ1{2
n HΣ1{2

n “ R1
n

»

—

—

—

–

λn,1 0

0 λn,2

fi

ffi

ffi

ffi

fl

Rn “
λn,2 ´ λn,1

2
R1

n

»

—

—

—

–

ρn ´ 1 0

0 ρn ` 1

fi

ffi

ffi

ffi

fl

Rn.

Define

ϑn “ RnΣ
´1{2
n θn, ϑ‹,n “ RnΣ

´1{2
n θ, g̃npϑq “

signpgpθnq ´ gpθ‹qq

λn,2 ´ λn,1
g
´

Σ1{2
n R1

nϑ
¯

.
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By construction,

Bg̃pϑ‹,nq

Bϑ
“ 0,

B2g̃pϑ‹,nq

Bϑ Bϑ1
“

signpgpθnq ´ gpθ‹qq

λn,2 ´ λn,1
RnΣ

1{2
n HΣ1{2

n R1
n “

1

2

»

—

—

—

–

ρn ´ 1 0

0 ρn ` 1

fi

ffi

ffi

ffi

fl

.

Let ϑ̂n “ RnΣ
´1{2θ̂n. Under Assumption 4.1, it holds that rnpϑ̂n ´ ϑnq

d
ÝÑ Np0, I2q

uniformly when limn rnpθn ´ θ‹q “ h P R2. Let H̃ “

»

—

—

—

–

ρ ´ 1 0

0 ρ ` 1

fi

ffi

ffi

ffi

fl

.

Under Assumption 4.1, by the almost sure representation theorem, there exists a

probability space with random variables Zn and Z defined on it such that (i) Zn has

the same distribution as rnpϑ̂n ´ ϑnq, (ii) Z „ Np0, I2q, and (iii) Zn
a.s.
ÝÝÑ Z. Define

h̃n “ rnpϑn ´ ϑ‹,nq,

T̂npgpθnqq “ inf
θ:gpθq“gpθnq

›

›

›
rnRnΣ̂

´1{2
pθ̂ ´ θq

›

›

›

2

“ inf
θ:gpθq“gpθnq

›

›

›
rnRnΣ

´1{2
pθ̂ ´ θq

›

›

›

2

` opp1q

“ inf
ϑ:g̃npϑ‹,n`ϑ´ϑ‹,nq“g̃npϑnq

›

›

›
rnpϑ̂ ´ ϑnq ` h̃n ´ rnpϑ ´ ϑ‹,nq

›

›

›

2

` opp1q

“ inf
ϑ:g̃npϑ‹,n`r´1

n xq“g̃npϑnq

›

›

›
rnpϑ̂ ´ ϑnq ´ px ´ h̃nq

›

›

›

2

` opp1q.

The second line follows from rnpθ̂ ´ θq “ Opp1q, with θ denoting the optimizer, and

from the consistency of Σ̂. The third and fourth lines follow from rearranging terms.

It follows that T̂n „ Tn ` opp1q, where

Tn “ inf
ϑ:g̃npϑ‹,n`r´1

n xq“g̃npϑnq

›

›

›
Zn ´ px ´ h̃nq

›

›

›

2

.

Let

T “ inf
x:x1H̃x“h̃1H̃h̃

›

›Z ´ px ´ hq
›

›

2
. (B.7)

By Lemma B.7, Tn “ T ` opp1q. Moreover, by Lemma B.11, T is continuously dis-
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tributed. Hence

lim
n
PnpTn ď c2q “ P pT ď c2q ě 1 ´ α,

where the inequality follows from Proposition 4.1 with condition either

h̃1H̃h̃ “ lim
n

4r2n
`

g̃pϑnq ´ g̃pϑ‹q
˘

“ lim
n

4signpgpθnq ´ gpθ‹qq

λn,2 ´ λn,1
r2n

`

gpθnq ´ gpθ‹q
˘

ě
c2p1 ´ ρq2

1 ` ρ

or ρ P r0, 1 ´ ηs.

Case 3. Suppose θn Ñ θ‹ and limn rnpθn ´ θ‹q Ñ 8. Define sn “ 1
||θn´θ‹||

! rn. By

construction,
›

›snpθn ´ θ‹q
›

› “ 1, so there exists a subsequence such that lim snpθn ´

θ‹q “ limhn “ h P Rdzt0du. Similar to Case 2, let Zn has the same distribution as

Σ̂´1{2rnpθ̂n ´ θnq,

Tn “ inf
x:gpθn`r´1

n xq“gpθnq

›

›

›
Zn ´ Σ̂´1{2x

›

›

›

2

.

Note that T̂n „ Tn. By Lemma B.8, Tn “ T ` opp1q, where

T “ inf
x:h1Hx“0

›

›

›
Z ´ Σ´1{2

n x
›

›

›

2

. (B.8)

Since h1H ‰ 0, T „ χ2
1, it holds that

lim
n
PnpTn ď c2q “ P pT ď c2q “ 1 ´ α.

Proof of Theorem 4.2.

Proof. There exists a subsequence Pnj
P Pnj

such that

lim inf
n

inf
PPPn

P
´

T̂npgpθnqq ď ĉ
¯

“ lim
j
Pnj

´

T̂npgpθnj
qq ď ĉ

¯

.

Since Θ and S are compact, the sequences tθnj
u and Σnj

have further subsequences nk

such that limk θnk
“ θ8 P Θ, limnk

rnk
pθnk

´ θ‹q Ñ h P Rd
r˘8s

, and limk Σnk
Ñ Σ P S.
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With slight abuse of notation, we will refer to this convergent subsequence as tnu

from here on.

Case 1. If limn θn “ θ8 ­“ θ‹, standard minimum distance arguments apply and will

show that T̂npgpθnqq
Pn

ù χ2
1. Let z P Hz. By construction, ĥn “ rnpθ̂´θ‹q´Σ̂

1{2
n z P H.

In addition, ĥn{rn
p
ÝÑ pθ8 ´ θ‹q ‰ 0, and since H has full rank, ĥ1

nH

||ĥn||

p
ÝÑ

pθ8´θ‹q1H
||θ8´θ‹||

‰ 0.

By Lemma B.9,

T̂ ˚
n pĥnq “ inf

h1x“0

›

›

›
Z ´ Σ´1{2x

›

›

›

2

` opp1q. (B.9)

The critical value

ĉ ě Q

ˆ

T̂ ˚
n pĥnq

ˇ

ˇ

ˇ
Z P Hz;

1 ´ α

1 ´ η

˙

“ Q

˜

inf
h1x“0

›

›

›
Z ´ Σ´1{2x

›

›

›

2
ˇ

ˇ

ˇ

ˇ

Z P Hz;
1 ´ α

1 ´ η

¸

` opp1q

where the inequality follows from ĥn P H and the equality follows from (B.9) and the

continuity of infh1x“0

›

›

›
Z ´ Σ´1{2x

›

›

›

2

. By Lemma B.12,

Q

˜

inf
h1x“0

›

›

›
Z ´ Σ´1{2x

›

›

›

2
ˇ

ˇ

ˇ

ˇ

Z P Hz;
1 ´ α

1 ´ η

¸

P

”

Qpχ2
1, 1 ´ αq, qχ2

1,1´α`η

¯

.

By the continuity of the limit distribution of T̂n, it holds that

lim
n
Pn

´

T̂n ď ĉ
¯

P r1 ´ α, 1 ´ α ` ηq .

Case 2. θ8 “ θ‹ and limn rnpθn ´ θ‹q “ h P Rd. Similar to the proof of Theorem 4.1

Case 2, T̂npgpθnqq „ T ` opp1q, T̂ ˚
n phnq „ T ` opp1q, where hn “ rnpθn ´ θ‹q,

T “ inf
x:x1Hx“h1Hh

›

›

›
Z ´ Σ´1{2

px ´ hq

›

›

›

2

.

By Lemma B.11, T is continuously distributed, thus ĉ
p
ÝÑ QpT |Z P Hz,

1´α
1´η

q. Note

that hn P H is equivalent to rnpθ̂n ´ θnq P Hz. To see the coverage rate,

P
´

T̂npgpθnqq ď ĉ
¯

ěP
´

T̂npgpθnqq ď ĉ, hn P H
¯
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“P
´

T̂npgpθnqq ď c,Zn P Hz

¯

` op1q

“P
`

T ď c|Z P Hz

˘

P pZ P Hzq ` op1q

“
1 ´ α

1 ´ η
p1 ´ ηq ` op1q.

Case 3. If θn Ñ θ‹ and limn rnpθn ´ θ‹q Ñ 8. Similar to the proof of Theorem 4.1

Case 3, T̂npgpθnqq „ T `opp1q, T̂ ˚
n phnq „ T `opp1q, where T is defined in (B.8), which

is χ2
1. The same argument as in Case 1 applies here, together with Lemma B.12, it

holds that

lim
n
Pn

´

T̂npgpθnqq ď ĉ
¯

P r1 ´ α, 1 ´ α ` ηq .

The lower bound is binding when k “ 1.

B.2 Lemmas

Lemma B.1. Fix θ “ pθ1, θ2q P R2, c “
a

Qpχ2
1, 1 ´ αq. If the set S̄ satisfies

1. B pθ, cq Ă S̄.

2. For all r ą c,
ˇ

ˇ

ˇ
length

`

BB pθ, rq X S̄
˘

ˇ

ˇ

ˇ
ě 4r arcsin c

r
.

Let θ̂ ´ θ „ Np0, I2q. Then

P
´

θ̂ P S̄
¯

ě 1 ´ α.

Proof. The key idea of Lemma B.1 is to compare the coverage probability of S̄ that

of an auxiliary acceptance set

Saux “
␣

px1, x2q : px2 ´ θ2q
2

ď c2
(

.

It is trivial that P
´

θ̂ P Saux

¯

“ 1 ´ α. We will show that the coverage probability of

S̄ is bounded below by that of Saux.

To simplify the comparison, we switch to polar coordinates. Let θ̂ “ pθ1`r cosω, θ2`

r sinωq,

P
´

θ̂ P Saux

¯

“
1

2π

ż `8

r“0

ż 3
2
π

ω“´π
2

1
“

pr sinωq
2

ď c2
‰

dω expp´
r2

2
qrdr
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“

ż c

r“0

expp´
r2

2
qrdr `

ż `8

r“c

4 arcsin c
r

2π
expp´

r2

2
qrdr. (B.10)

To see (B.10), note that if r ď c, then pr sinωq2 ď c2 for all ω P r´1
2
π, 3

2
πs; if r ą c,

then

pr sinωq
2

ď c2, ω P r´
π

2
,
3

2
πs

ôω P

„

´ arcsinp
c

r
q, arcsinp

c

r
q

ȷ

Y

„

π ´ arcsinp
c

r
q, π ` arcsinp

c

r
q

ȷ

.

Now consider P
´

θ̂ P S̄
¯

. By Condition 1 and 2,

P
´

θ̂ P S̄
¯

“
1

2π

ż `8

r“0

1

r

ˇ

ˇ

ˇ
length

`

BB pθ, rq X S̄
˘

ˇ

ˇ

ˇ
expp´

r2

2
qrdr

ě

ż c

r“0

expp´
r2

2
qrdr `

ż `8

r“c

4 arcsin c
r

2π
expp´

r2

2
qrdr. (B.11)

This lower bound matches the expression in (B.10), which completes the proof. An

illustration of Lemma B.1 is provided in Figure B.2.

Figure B.2: Lemma B.1: Acceptance Region of Linear and Curved Null.
The red curve shows the null parameter space S0pτq. Shaded areas denote the acceptance regions Saux (left) and

S̄ (right). “*” represents the true value θ, and the blue circles represent Bpθ, rq with bold segments indicating the

portions inside the acceptance regions. If, for all r, the bold segment in the right panel is longer than that in the left,

then the acceptance rate of S̄ is at least 1 ´ α.
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Lemma B.2. The boundary BS`pτ, cq can be characterized by two curves. The upper

one is Cupcq defined in (B.1) and the lower one is Cℓpcq defined in (B.2).

Proof. Cupcq and Cℓpcq are obtained by shifting S`
0 pτq a distance c along its normal di-

rection. Note that with τ P p0, c
2p1´ρq2

1`ρ
s, for all x P p´x˚

1 , x
˚
1q,

`

Cu,1px1, cq, Cu,2px1, cq
˘

is an interior point of S`pτ, cq, thus not included in Cupcq. By construction, Cupcq Y

Cℓpcq Ď Spτ, cq.

Then we show that Cu and Cℓ are the boundaries of S`pτ, cq. First, we show that Cu
is convex. Let C 1

u,1 and C2
u,1 be the first and second order derivatives of Cu,1 with

respect to x,

d2Cu,2

dC2
u,1

“
C2

u,2C
1
u,1 ´ C 1

u,2C
2
u,1

´

C 1
u,1

¯3

“
p1 ´ ρqτ

`

pρ ` 1qτ ` 2p1 ´ ρqx21
˘3{2

?
1 ` ρ

`

p1 ´ ρqx21 ` τ
˘3{2

´

`

p1 ` ρqτ ` 2p1 ´ ρqx21
˘3{2

´ c
`

1 ´ ρ2
˘

τ
¯´1

.

The sign of d2Cu,2

dC2
u,1

is the same as
`

p1 ` ρqτ ` 2p1 ´ ρqx21
˘3{2

´ c
`

1 ´ ρ2
˘

τ . If τ ě

c2p1´ρq2

1`ρ
, then

`

p1 ` ρqτ ` 2p1 ´ ρqx21
˘3{2

´ c
`

1 ´ ρ2
˘

τ ě
`

p1 ` ρqτ ` 0
˘3{2

´ c
`

1 ´ ρ2
˘

τ

“ τp1 ` ρq

´

p1 ` ρq
1{2τ 1{2

´ c p1 ´ ρq

¯

ě τp1 ` ρq

ˆ

p1 ` ρq
1{2 cp1 ´ ρq

?
1 ` ρ

´ c p1 ´ ρq

˙

“ 0.

If τ P

”

0, c
2p1´ρq2

1`ρ

ı

,

`

p1 ` ρqτ ` 2p1 ´ ρqx21
˘3{2

´ c
`

1 ´ ρ2
˘

τ ě
`

p1 ` ρqτ ` 2p1 ´ ρqx˚2
1

˘3{2
´ c

`

1 ´ ρ2
˘

τ

“ c3p1 ´ ρq
3

´ c
`

1 ´ ρ2
˘

τ ě 0.

Thus d2Cu,2

dC2
u,1

ě 0 and Cu is convex.

Next, by Lemma B.3, the connecting line of
`

Cu,1px1, cq, Cu,2px1, cq
˘

and px1, X2px1qq

is orthogonal to the tangent line of Cu at
`

Cu,1px1, cq, Cu,2px1, cq
˘

. In addition, since
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Cu is convex, Cu is above its tangent line. This implies that @x1

d
`

px1, X2px1qq, Cu
˘

“ d
´

`

x1, X2px1q
˘

,
`

Cu,1px1, cq, Cu,2px1, cq
˘

¯

“ c. (B.12)

This also implies that for all pCu,1px1, cq, Cu,2px1, cqq P Cu,

c ě d
`

pCu,1px1, cq, Cu,2px1, cqq,S`
0 pτq

˘

ě c,

where the first equality follows from the fact that

d
`

px1, X2px1qq, pCu,1px1, cq, Cu,2px1, cqq
˘

“ c

and the second inequality follows from (B.12), i.e.

d
´

`

Cu,1px1, cq, Cu,2px1, cq
˘

,S`
0 pτq

¯

ě d
`

Cu,S`
0 pτq

˘

“ inf
x1

d
`

Cu, px1, X2px1qq
˘

“ c.

Therefore, Cu is the upper part of the boundary of S`pτ, cq.

To show that Cℓ is on the boundary of S`
0 pτq, note that by Lemma B.3, the connecting

line of
`

Cℓ,1px1, cq, Cℓ,2px1, cq
˘

and px1, X2px1qq is orthogonal to the tangent line of

S`
0 pτq at

`

x1, X2px1q
˘

. In addition, since

d2X2px1q

dx21
“

p1 ´ ρqτ
?
1 ` ρ

`

τ ` p1 ´ ρqx21
˘3{2

ě 0,

S`
0 pτq is convex. Thus S`

0 pτq is above its tangent line. This implies that

d
´

`

Cℓ,1px1, cq, Cℓ,2px1, cq
˘

,S`
0 pτq

¯

“ c.

Thus Cℓ is the lower part of the boundary of S`pτ, cq.

Lemma B.3. Let x1 P Rzp´x˚
1 , x

˚
1q.

1. The perpendicular bisector of
`

Cℓ,1px1, cq, Cℓ,2px1, cq
˘

and
`

Cu,1px1, cq, Cu,2px1, cq
˘

is tangent to S`
0 pτq at px1, X2px1qq.

2. The connecting line of
`

Cu,1px1, cq, Cu,2px1, cq
˘

and
`

Cℓ,1px1, cq, Cℓ,2px1, cq
˘

is

orthogonal to the tangent line of Cu and Cℓ at these points.
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Proof. To show 1. It is easy to verify that

1

2

`

Cℓ,1px1, cq ` Cu,1px1, cq
˘

“ x1,

1

2

`

Cℓ,2px1, cq ` Cu,2px1, cq
˘

“ X2px1q.

In addition,

Cu,2px1, cq ´ Cℓ,2px1, cq

Cu,1px1, cq ´ Cℓ,1px1, cq
“ ´

p1 ` ρqX2px1q

p1 ´ ρqx1
,

dX2px1q

dx1
“

p1 ´ ρqx1
p1 ` ρqX2px1q

ñ
Cu,2px1, cq ´ Cℓ,2px1, cq

Cu,1px1, cq ´ Cℓ,1px1, cq

dX2px1q

dx1
“ ´1.

This completes the proof.

To show 2, straightforward calculation shows that

dCu,2

dCu,1

“
C 1

u,2

C 1
u,1

“
dX2px1q

dx1
,

dCℓ,2

dCℓ,1

“
C 1

ℓ,2

C 1
ℓ,1

“
dX2px1q

dx1
.

By the first part, the connecting line of
`

Cu,1px1, cq, Cu,2px1, cq
˘

and
`

Cℓ,1px1, cq, Cℓ,2px1, cq
˘

is orthogonal to the tangent line of S`
0 pτq at px1, X2px1qq. Therefore, it is also or-

thogonal to the tangent line of Cipcq at
`

Ci,1px1, cq, Ci,2px1, cq
˘

with i “ u, ℓ.

Lemma B.4. Let r ą c, θ “ pθ1, θ2q P S`
0 pτq.

1. If θ1 R p´x˚
1 , x

˚
1q, there exists px1, x

p1q

2 q P BB
`

pθ1, θ2q, r
˘

, px1, x
p2q

2 q P Cupτ, cq

such that x
p1q

2 ą x
p2q

2 .

2. There exists px1, x
p1q

2 q P BB
`

pθ1, θ2q, r
˘

, px1, x
p2q

2 q P Cℓpτ, cq such that x
p1q

2 ă x
p2q

2 .

3. If τ ď
c2p1´ρq2

1`ρ
, θ1 P p´x˚

1 , x
˚
1q, then

d
`

θ, Cupcq
˘

“ dpθ,Kq, with K in pB.3q.

4. Suppose ρ ě 0, τ ď
c2p1´ρq2

1`ρ
, θ1 P p´x˚

1 , x
˚
1q, and r P

`

c, r̄pθ1q
˘

. If

`

Cℓ,1px1, cq, Cℓ,2px1, cq
˘

P BB pθ, rq ,
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then Cℓ,2px1, cq ă 0.

Proof. Prove 1. Let x1 “ Cu,1pθ1, cq and x
p2q

2 “ Cu,2pθ1, cq. By construction, px1, x
p2q

2 q P

Cupτ, cq and d
´

θ, px1, x
p2q

2 q

¯

“ c ă r. In addition, there exists x2 large enough

such that d
`

θ, px1, x2q
˘

ą r. By continuity, there exists x
p1q

2 P px
p2q

2 , x2q such that

d
´

θ, px1, x
p2q

2 q

¯

“ r.

The proof of 2 is an analog of 1.

To prove 3, let x1 R p´x˚
1 , x

˚
1q. The distance between θ and

`

Cu,1px1, cq, Cu,2px1, cq
˘

P

Cupcq is

hpx1q “
`

Cu,1px1, cq ´ θ1
˘2

`
`

Cu,2px1, cq ´ X2pθ1q
˘2
.

Taking the first order derivative

dhpx1q

dx1
“ px1 ´ θ1q

´

`

p1 ` ρqτ ` 2p1 ´ ρqx21
˘3{2

´ cp1 ´ ρ2qτ
¯

ˆ
2
´

p1´ρq2x1px1`θ1q`p1´ρ2qx2
1`p1`ρqτ`p1`ρq

?
p1´ρqx2

1`τ
?

θ21p1´ρq`τ
¯

p1`ρq
?

τ`p1´ρqx2
1pp1`ρqτ`2p1´ρqx2

1q
3{2

´?
τ`p1´ρqx2

1`
?

θ21p1´ρq`τ
¯ .

Note that (i) |x1| ě x˚
1 ě |θ1| thus x1px1 ` θ1q ě 0; (ii) τ ď

c2p1´ρq2

1`ρ
thus

`

p1 ` ρqτ ` 2p1 ´ ρqx21
˘3{2

´cp1´ρ2qτ ě
`

p1 ` ρqτ ` 2p1 ´ ρqx˚2
1

˘3{2
´cp1´ρ2qτ “ 0.

Therefore, the sign of dhpx1q

dx1
is the same as px1´θ1q, and thus dhpxq

dx
ă 0 for x ă ´x˚

1 ă

0, and dhpxq

dx
ą 0 for x ą x˚

1 ą 0. Hence, hpxq is minimized at x˚
1 , i.e. point H.

To prove 4, by contradiction, assume that there exists A “ pCℓ,1px1q, Cℓ,2px1qq P

BB
`

pθ1, θ2q, r
˘

and Cℓ,2px1q ě 0. WLOG, assume that Cℓ,1px1q ě 0. Since Cℓ,2px1q is

increasing in x1, and Cℓ,2

ˆ?
c2pρ`1q2´pρ`1qτ

?
2

?
1´ρ

˙

“ 0, we have

x1 ą

a

c2p1 ` ρq2 ´ p1 ` ρqτ
?
2
?
1 ´ ρ

ě x˚
1 .

Let A1 “ pCu,1px1q, Cu,2px1qq. By Lemma B.3, the perpendicular bisector of AA1 is

tangent of S`
0 pτq at px1, X2px1qq. Since S`

0 pτq is convex, θ is above the perpendicular
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bisector. This further implies that

r “ d pθ, Aq ą d
`

θ, A1
˘

.

However, by Lemma B.4.3, we have

d
`

θ, A1
˘

ě d pθ,Kq “ r̄pθ1q,

which is a contradiction. Therefore, such x1 does not exist.

Lemma B.5. Let r ą 0. S`
0 pτq intersects BB

`

pθ1, X2pθ1qq, r
˘

at a minimum of two

points.

Proof. Let hpx1q be the distance between px1, X2px1qq P S`
0 pτq and the center of the

circle pθ1, θ2q “ pθ1, X2pθ1qq, i.e.

hpx1q “ px1 ´ θ1q
2

`
`

X2px1q ´ X2pθ1q
˘2

“

´

a

τ ` p1 ´ ρqx21 ´
a

τ ` p1 ´ ρqθ21

¯2

1 ` ρ
` px1 ´ θ1q

2.

It is easy to see that hpθ1q “ 0, hp´8q “ 8 and hp`8q “ 8. Since hpx1q is a

continuous function, there exists x
p1q

1 ă θ1 ă x
p2q

1 such that

hpx
p1q

1 q “ hpx
p2q

1 q “ r2.

Thus S`
0 pτq intersects BB

`

pθ1, θ2q, r
˘

at
´

x
p1q

1 , X2px
p1q

1 q

¯

and
´

x
p2q

1 , X2px
p2q

1 q

¯

.

Lemma B.6. Let τ ď
p1´ρq2c2

1`ρ
, with ρ ě 0. Suppose |x1| ă x˚

1 and let O “

px1, X2px1qq P S0pτq. Define C´
j “

␣

px1, x2q : px1,´x2q P Cjpcq
(

where j “ ℓ, u, Cj
is defined as in Lemma B.2. For all r ă r̄px1q, let px

p1q

1 , 0q, px
p2q

1 , 0q P BBpO, rq. Then

1. max
!

|x
p1q

1 |, |x
p2q

1 |

)

ď x̄1 :“
?
2
?

c2pρ`1q´τ
?

1´ρ2
.

2. If px1, x2q P BBpO, rq X C´
ℓ , then x2 ě 0. Moreover, BBpO, rq X C´

u “ H.

Proof. Proof of Part 1. WLOG, assume x
p1q

1 ě 0. Let k “

?
2
?

c2p1´ρq`τ
?

1´ρ2
be the vertical
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axis of K. Let

hpx1q “
›

›O ´ px̄1, 0q
›

›

2
´ }O ´ K}

2

“ px̄1 ´ x1q
2

` X2px1q
2

´ x21 ´
`

k ´ X2px1q
˘2
.

It suffices to show that hpx
p1q

1 q ě 0. Note that

Bhpx1q

Bx1
“

2
?
2
´

p1`ρq2p1´ρqpc2p1´ρq`τqpτ`p1´ρqx2
1q

¯´1{2

pc2p1´ρq`τqx1p1´ρq`

b

p1`ρqpc4p1´ρ2q`2c2ρτ´τ2q
?

τ`p1´ρqx2
1

h̃px1q

h̃px1q “ 2p1 ´ ρq
`

c2τp1 ´ 3ρq ` τ 2 ´ 2c4p1 ´ ρqρ
˘

x21 ´ p1 ` ρq
`

c4p1 ´ ρ2q ` 2c2ρτ ´ τ 2
˘

τ .

The sign of Bhpx1q

Bx1
depends on h̃px1q. Observe that

h̃p0q “ ´p1 ` ρq
`

c4 ´ pτ ´ ρc2q2
˘

τ ď 0

where the inequality follows from τ ď
p1´ρq2c2

1`ρ
ď p1 ` ρqc2. Moreover

h̃px˚
1q “ ´2c2p1 ´ ρqρ

`

τ ´ c2pρ ´ 1q
˘2

ď 0.

Since h̃px1q is monotone in x1 for x1 ą 0, we have

h̃px1q ď max
!

h̃p0q, h̃px˚
1q

)

ď 0.

Thus hpx1q decreases in x1, and hpx
p1q

1 q ě 0 follows from

hpx1q ě hpx˚
1q

“
8c4ρ2p1 ´ ρ2q´1

c2p1 ` ρ2q ´ p1 ` ρqτ `

b

pρ ` 1q
`

c2p1 ` ρq ´ τ
˘
a

c2p1 ´ ρq2 ´ pρ ` 1qτ
ě 0.

Proof of Part 2. We can verify that px̄1, 0q P C´
ℓ . Moreover, for all px1, x2q P C´

ℓ ,

if x2 ă 0, then |x1| ą x̄1. By Part 1, such points cannot lie on BBpO, rq. Finally,

BBpO, rq X C´
u because

dpO, C´
u q ą dpO, Cuq “ dpO,Kq “ r̄px1q ą r.
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The inequality from the symmetry of Cu and C´
u about the x1-axis, combined with

X2px1q ą 0. The equality follows from Lemma B.4.3.

Lemma B.7. Suppose ϑ‹,n Ñ ϑ‹, and g̃n satisfies (i) Bg̃npϑ‹,nq

Bϑ
“ 0, (ii) B2g̃npϑ‹,nq

BϑBϑ1 Ñ H

with a full rank H, (iii) B2g̃npϑq

BϑBϑ1 is Lipschitz continuous in ϑ with Lipschitz coefficient

M P R` for all ϑ P Bpϑ‹, ϵq where ϵ ą 0. Let Z „ Np0, Idq and Zn “ Z ` opp1q. Let

hn “ rnpϑn ´ ϑ‹,nq. If limn hn “ h P Rd, then

T p1q
n “ T p1q

` opp1q,

where

T p1q
n “ inf

g̃npϑ‹,n`r´1
n xq“g̃npϑnq

›

›Zn ´ px ´ hnq
›

›

2
, T p1q

“ inf
x1Hx“h1Hh

›

›Z ´ px ´ hq
›

›

2
.

Proof. Let x˚
n, x

˚ P Rk be minimizers of T
p1q
n and T p1q, respectively. Standard quadratic

arguments imply x˚
n, x

˚ “ Opp1q.

Step 1. Prove T p1q ď T
p1q
n ` opp1q. By feasibility of x˚

n,

g̃npϑ‹,n ` r´1
n x˚

nq “ g̃npϑnq “ g̃npϑ‹,n ` r´1
n hnq

g̃npϑ‹,nq ` r´1
n

Bg̃npϑ‹,nq

Bϑ1 x˚
n ` r´2

n x˚1
n

B2g̃npϑ̄q

BϑBϑ1 x
˚
n “ g̃npϑ‹,nq ` r´1

n
Bg̃npϑ‹,nq

Bϑ1 hn ` r´2
n h1

n
B2g̃np ¯̄ϑq

BϑBϑ1 hn

ñ x˚1
n

B2g̃npϑ̄q

BϑBϑ1 x
˚
n “ h1

n
B2g̃np ¯̄ϑq

BϑBϑ1 hn

where ϑ̄ is between ϑ‹,n and ϑ‹,n ` r´1
n x˚

n, and
¯̄ϑ is between ϑ‹,n and ϑ‹,n ` r´1

n hn. By

Assumption 4.1.1,

x˚1
n

“

H ` opp1q
‰

x˚
n “

`

h ` op1q
˘1 “

H ` opp1q
‰ `

h ` op1q
˘

ñ x˚1
nHx

˚
n “ h1Hh ` opp1q. (B.13)

Case 1. h1Hh “ 0 and H is positive/ negative definite. (B.13) implies x˚
n “ opp1q.

Hence

T p1q
ď }Z ` h}

2
“ T p1q

n ` opp1q.

For Case 2 and Case 3 below, we construct x̃˚
n “ x˚

n`opp1q such that x̃˚1
nHx̃

˚
n “ h1Hh.
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It then follows that

T p1q
ď
›

›Z ´ px̃˚
n ´ hq

›

›

2
“
›

›Zn ´ px˚
n ´ hq

›

›

2
` opp1q “ T p1q

n ` opp1q.

Case 2. h1Hh “ 0 and H is indefinite. By Lemma B.13, there is yn such that

x˚1
nHyn “ 0, y1

nHyn “ ´signpx˚1
nHx

˚
nq.

Let x̃˚
n “ x˚

n ` ξnyn, where ξn “
a

|x˚1
nHx

˚
n|. By (B.13), ξn “ opp1q. In addition,

x̃˚1
nHx̃

˚
n “ px˚

n ` ξnynq
1 H px˚

n ` ξnynq “ x˚1
nHx

˚
n ´ signpx˚1

nHx
˚
nqξ2n “ 0.

Case 3. h1Hh ‰ 0. Let p1`ξnq2 “ h1Hh
x˚1
n Hx˚

n
. By (B.13), ξn “ opp1q. Let x̃˚

n “ x˚
n `ξnx

˚
n.

By construction, x̃˚1
nHx̃

˚
n “ h1Hh.

Step 2. Prove T
p1q
n ď T p1q ` opp1q. Case 1. h1Hh “ 0 and H is positive or negative

definite. Here x˚ “ 0 and T “ Z1Z. Thus,

T p1q
n ď }Zn}

2
` opp1q “ T p1q

` opp1q.

For Case 2 and Case 3 below, we show that there exists ηn “ opp1q such that

g̃npϑ‹,n ` r´1
n px˚

` ηnq “ g̃npϑnq.

Then the conclusion follows from

T p1q
n ď

›

›Zn ´ px˚
` ηn ´ hnq

›

›

2
“
›

›Z ´ px˚
´ hq

›

›

2
` opp1q “ T p1q

` opp1q.

Case 2. h1Hh “ 0 and H is indefinite. Assume H “ diag tλ1, ..., λm,´λm`1, ...,´λdu

with λ1, ..., λd ą 0. If H is not diagonal, write H “ P 1ΛP with diagonal Λ and

transform x˚ by Px˚. Define

y˚
“ ´sign

`

g̃npϑ‹,n ` r´1
n x˚

q ´ g̃npϑnq
˘

px˚
1 , ..., x

˚
m,´x

˚
m`1, ...,´x

˚
dq.
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Then

y˚1Hy˚
“ x˚1Hx˚

“ 0, y˚1Hx˚
“ ´sign

`

g̃npϑ‹,n ` r´1
n x˚

q ´ g̃npϑnq
˘

d
ÿ

i“1

λix
˚2
i .

Let

unpξq “ r2n

´

g̃n
`

ϑ‹,n ` r´1
n px˚

` ξy˚
q
˘

´ g̃npϑnq

¯

.

Define

ξn “ argmin
ξ

|ξ| s.t. unpξq “ 0.

We show ξn “ opp1q. Note that

unp0q “ r2n

´

g̃n
`

ϑ‹,n ` r´1
n x˚

˘

´ g̃npϑnq

¯

,

and for all ϵ ą 0,

unpϵq “ 2ϵy˚1Hx˚
` opp1q “ ´2ϵsign

`

unp0q
˘

d
ÿ

i“1

λix
˚2
i ` opp1q.

By Lemma B.10, there is N such that for all n ě N ,

P p|ξn| ď ϵq ě P
`

unpϵqunp0q ď 0
˘

ě 1 ´ ϵ,

which implies that ξn “ opp1q. Let ηn “ ξny
˚, the conclusion follows.

Case 3. h1Hh ‰ 0. Define

ξn “ argmin |ξ|
ξ

s.t. r2n
`

g̃npϑ‹,n ` p1 ` ξqr´1
n x˚

q ´ g̃npϑnq
˘

“ 0,

and ξn “ 8 if no solution exists. We show ξn “ opp1q, i.e. for all ϵ ą 0, there is N

such that for all n ą N P
`

|ξn| ą ϵ
˘

ă ϵ. To see this, let

un pξq “ r2n
`

g̃npϑ‹,n ` r´1
n p1 ` ξqx˚

q ´ g̃npϑnq
˘

.

Then

unpϵq “
`

p1 ` ϵq2 ´ 1
˘

h1Hh ` opp1q, unp´ϵq “
`

p1 ´ ϵq2 ´ 1
˘

h1Hh ` opp1q.
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Therefore, there is N such that for all n ą N ,

P
`

unpϵqunp´ϵq ă 0
˘

ě 1 ´ ϵ.

By the continuity of un,
␣

unpϵq ą 0 and unp´ϵq ă 0
(

implies |ξn| ď ϵ. Therefore, for

all n ą N ,

P p|ξn| ď ϵq ě P
`

unpϵq ą 0 and unp´ϵq ă 0
˘

ě 1 ´ ϵ.

The conclusion follows from ηn “ ξnx
˚.

Lemma B.8. Suppose Assumption 3.2 holds. Let Z „ Np0, Idq and Zn “ Z ` opp1q.

Suppose Σn “ Σ ` opp1q with Σ P S, where S is defined in Assumption 4.1.3. If

lim snpθn ´ θ‹q “ h P Rd with h1H ‰ 0, for some sequence sn Ñ 8 with sn{rn Ñ 0,

then

T p2q
n “ T p2q

` opp1q

where

T p2q
n “ inf

gpθn`r´1
n xq“gpθnq

›

›

›
Zn ´ Σ´1{2

n x
›

›

›

2

, T p2q
“ inf

h1Hx“0

›

›

›
Z ´ Σ´1{2x

›

›

›

2

. (B.14)

Proof. Let x˚
n and x˚ denote the optimizers of T

p2q
n and T p2q, respectively. It is easy

to verify that x˚
n, x

˚ “ Opp1q.

Step 1. Prove T p2q ď T
p2q
n ` opp1q. Let θ˚

n “ θn ` r´1
n x˚

n. By the feasibility constraint,

0 “snrn
`

gpθ˚
nq ´ gpθnq

˘

.

Expanding gpθ˚
nq around θn using a second-order Taylor expansion, and linearizing

∇gpθnq around θ‹, we obtain

0 “snrn

˜

Bgpθnq

Bθ1
pθ˚

n ´ θnq ` pθ˚
n ´ θnq

1 Bgpθ̄q

BθBθ1
pθ˚

n ´ θnq

¸

“snpθn ´ θ‹q
Bgp ¯̄θq

BθBθ1
rnpθ˚

n ´ θnq `
sn
rn
rnpθ˚

n ´ θnq
1 Bgpθ̄q

BθBθ1
rnpθ˚

n ´ θnq

“h1
n

Bgp ¯̄θq

BθBθ1
x˚
n `

sn
rn
x˚1
n

Bgpθ̄q

BθBθ1
x˚
n

“h1Hx˚
n ` opp1q. (B.15)
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where θ̄ is between θn and θ˚
n and ¯̄θ is between θn and θ‹. Since h1H ‰ 0, there is ι

such that h1Hι “ 1, and an “ opp1q such that

h1Hpx˚
n ` anιq “ 0.

Thus x˚
n ` anι is feasible for the problem in T p2q, which implies that

T p2q
ď

›

›

›
Z ´ Σ´1{2

n px˚
n ` anιq

›

›

›

2

“ T p2q
n ` opp1q.

Step 2, we show that T
p2q
n ď T p2q`opp1q. By the same algebra in (B.15), for b “ Opp1q,

snrn
`

gpθn ` r´1
n px˚

` bιqq ´ gpθnq
˘

“ h1Hpx˚
` bιq ` opp1q “ b ` opp1q,

where the last equality follows from h1Hx˚ “ 0. Define bn as the solution for

bn “ argmin |b|
b

s.t. gpθn ` r´1
n px˚

` bιqq ´ gpθnq “ 0,

and bn “ 8 if there is no solution for gpθn ` r´1
n px˚ ` bιqq ´ gpθnq “ 0. Next, we show

that bn “ opp1q, i.e. for all ϵ ą 0, there is N such that for all n ą N , P p|bn| ą ϵq ă ϵ.

Let

unpbq “ snrn
`

gpθn ` r´1
n px˚

` bιqq ´ gpθnq
˘

.

Then

unpϵq “ ϵ ` opp1q, unp´ϵq “ ´ϵ ` opp1q.

Therefore, there is N such that for all n ą N ,

P
`

unpϵqunp´ϵq ă 0
˘

ě 1 ´ ϵ.

This implies that

T p2q
n ď

›

›

›
Zn ´ Σ´1{2

n px˚
` bnιq

›

›

›

2

“

›

›

›
Z ´ Σ´1{2x˚

›

›

›

2

` opp1q “ T p2q
` opp1q.

Step 1 and 2 complete the proof.

Lemma B.9. Suppose Assumption 4.1.3 and 4.14 hold. Let ĥn and sn be sequences
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such that sn Ñ 8, ||ĥn||{sn
p
ÝÑ b ‰ 0, and ĥ1

n

||ĥn||
H

p
ÝÑ h1. For T̂ ˚

n phq defined in (4.4)

with Z „ Np0, Idq, it holds that

T̂ ˚
n pĥnq “ inf

h1x“0

›

›

›
Z ´ Σ´1{2x

›

›

›

2

` opp1q.

Proof. Let x “ t ´ hn, we can rewrite T̂ ˚
n pĥnq as

T̂ ˚
n pĥnq “ inf

x:
ĥ1
nH

||ĥn||
x“´ x1Hx

2||ĥn||

›

›

›
Z ´ pΣ̂q

´1{2x
›

›

›

2

. (B.16)

Note that the optimizer x˚
n “ Opp1q, thus

h1x˚
n “

˜

ĥ1
nH

||ĥn||
` op1q

¸

x˚
n “ ´

x˚1
nHx

˚
n

2||ĥn||
` opp1q “ opp1q

where the last equality follows from ĥn{sn
p
ÝÑ b ‰ 0. The remainder follows by the

same continuity and perturbation arguments as in Lemma B.8.

Lemma B.10. Let εn “ opp1q, X „ Nph, Idq with h P Rd, and let x˚ be the solution

to

inf
x1Hx“0

T pxq, where T pxq “ }X ´ x}
2 ,

where H “ diagtλ1, ..., λm,´λm`1, ...,´λdu with λi ą 0. Then for all ϵ ą 0, there is

N such that for all n ą N ,

P

¨

˝ϵ
d
ÿ

i“1

λix
˚2
i ` εn ą 0

˛

‚ě 1 ´ ϵ.

Proof. Step 1. Let ℓ1 “
?
λ1?

λ1`λd
, ℓ2 “

a

1 ´ ℓ21. Then

inf
x1Hx“0

T pxq ď inf
ℓ1x1´ℓ2xd“0, x2:d´1“0

T pxq “ T p0q ´ pℓ2X1 ` ℓ1Xdq
2 .

By the continuity of T pxq, for all ϵ ą 0, there is Cϵ ą 0 such that

P

¨

˝

d
ÿ

i“1

λix
˚2
i ă Cϵ

˛

‚ď P

˜

T p0q ´ inf
x1Hx“0

T pxq ă

ˆ

Φ´1
p
1

2
`
ϵ

4
q

˙2
¸
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ď P

˜

pℓ2X1 ` ℓ1Xdq
2

ă

ˆ

Φ´1
p
1

2
`
ϵ

4
q

˙2
¸

.

Since ℓ2X1 ` ℓ1Xd „ N pℓ2h1 ` ℓ1hd, 1q, the squared term follows a noncentral χ2
1, so

the probability is bounded by ϵ{2.

Step 2. Since εn “ opp1q, there is N such that for all n ě N ,

P

ˆ

εn ě ´
Cϵϵ

2

˙

ě 1 ´
ϵ

2
.

Combining with Step 1,

P

¨

˝ϵ
d
ÿ

i“1

λix
˚2
i ` εn ą 0

˛

‚ě P

¨

˝

d
ÿ

i“1

λix
˚2
i ě Cϵ, εn ą ´

Cϵϵ

2

˛

‚

ě P

¨

˝

d
ÿ

i“1

λix
˚2
i ě Cϵ

˛

‚` P

ˆ

εn ą ´
Cϵϵ

2

˙

´ 1

ě 1 ´
ϵ

2
` 1 ´

ϵ

2
´ 1 “ 1 ´ ϵ.

Lemma B.11. Let DpY q “ infx:x1Hx“c }Y ´ x} where Y is continuously distributed

and c ě 0. Then DpY q is continuously distributed.

Proof. It suffices to show that for all a ě 0, P
`

DpY q “ a
˘

“ 0. Let S “ tx : x1Hx “ cu.

Case 1. a “ 0. Here P pDpY q “ 0q “ P pY P Sq. Since H is indefinite, S is a variety

of dimension at most d´ 1, and hence S has Lebesgue measure zero. Because Y has

a continuous distribution, so P pY P Sq “ 0.

Case 2. a ą 0. Suppose, by contradiction, that P
`

DpY q “ a
˘

ą 0. Then the set

Sa “
␣

y : Dpyq “ a
(

must have positive Lebesgue measure. Since Dpyq is continuous

in y, Sa is a closed set. Hence, there exists a ball Bpo, rq with a ą r ą 0 such that

Bpo, rq Ď Sa. Let o1 be the projection of o onto S, i.e. o1 P S and ||o ´ o1|| “ a.

Choose a point k P BBpo, rq X oo1. Such k exists since o lies inside BBpo, rq while o1
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lies outside. By construction,

||k ´ o1
|| “ ||o ´ o1

|| ´ ||o ´ k|| “ a ´ r ă a

which contradicts the fact that k P Bpo, rq Ď Sa. Therefore, no such a ą 0 can

exist.

Lemma B.12. Let Z „ Np0, Idq, and Hz be a set satisfying P pZ P Hzq ě 1 ´ η.

Then

Q

˜

inf
h1x“0

}Z ´ x}
2

ˇ

ˇ

ˇ

ˇ

Z P Hz;
1 ´ α

1 ´ η

¸

P
“

Qpχ2
1, 1 ´ αq, Qpχ2

1, 1 ´ α ` ηq
˘

.

Proof. To show the upper bound,

P

˜

inf
h1x“0

}Z ´ x}
2

ď Qpχ2
1, 1 ´ α ` ηq

ˇ

ˇ

ˇ

ˇ

Z P Hz

¸

“

P
´

infh1x“0 }Z ´ x}
2

ď Qpχ2
1, 1 ´ α ` ηq,Z P Hz

¯

P pZ P Hzq

ą

P
´

infh1x“0 }Z ´ x}
2

ď Qpχ2
1, 1 ´ α ` ηq

¯

` P pZ P Hzq ´ 1

P pZ P Hzq

“
1 ´ α ` η ` 1 ´ η ´ 1

1 ´ η
“

1 ´ α

1 ´ η
.

To show the lower bound,

P

˜

inf
h1x“0

}Z ´ x}
2

ď Qpχ2
1, 1 ´ αq

ˇ

ˇ

ˇ

ˇ

Z P Hz

¸

“

P
´

infh1x“0 }Z ´ x}
2

ď Qpχ2
1, 1 ´ αq,Z P Hz

¯

P pZ P Hzq

ď

P
´

infh1x“0 }Z ´ x}
2

ď Qpχ2
1, 1 ´ αq

¯

P pZ P Hzq
“

1 ´ α

1 ´ η
.

Lemma B.13. Let H be a d ˆ d full rank indefinite matrix. For all d ˆ 1 vector x,
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there exists d ˆ 1 vector y such that y1Hx “ 0 and y1Hy “ ´signpx1Hxq.

Proof. If x1Hx “ 0, the conclusion holds trivially with y “ 0d. WLOG, assume that

x1Hx ą 0. First assume that H is diagonal. If not, write H “ P 1ΛP , where Λ is

diagonal, x̃ “ Px and ỹ “ Py; the same argument then applies. Without loss of

generality, let

H “ diagpλ1, ..., λm,´λm`1, ...,´λdq, λ1, ..., λd ą 0.

Case 1. If xm`1, ..., xd “ 0, let y “ p0d´1, 1q. It is easy to verify that y1Hx “ 0

and y1Hy “ ´λd ă 0. Case 2. Suppose xd ‰ 0, let y “ px1, ..., xm, 0d´m´1, ydq,

yd “

řm
i“1 λix

2
i

λdxd
. Then

y1Hx “

m
ÿ

i“1

λix
2
i ´ λdxdyd “

m
ÿ

i“1

λix
2
i ´ λdxd

řm
i“1 λix

2
i

λdxd
“ 0,

y1Hy “

m
ÿ

i“1

λix
2
i ´ λdy

2
d “ ´

řm
i“1 λix

2
i

λdx2d

˜

m
ÿ

i“1

λix
2
i ´ λdx

2
d

¸

ď ´

řm
i“1 λix

2
i

λdx2d
x1Hx ă 0.

Then conclusion holds with a simple normalization of y.
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