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Abstract

We study inference in models where a transformation of parameters exhibits
first-order degeneracy — that is, its gradient is zero or close to zero, making
the standard delta method invalid. A leading example is causal mediation
analysis, where the indirect effect is a product of coefficients and the gradient
degenerates near the origin. In these local regions of degeneracy the limiting
behaviors of plug-in estimators depend on nuisance parameters that are not
consistently estimable. We show that this failure is intrinsic — around points
of degeneracy, both regular and quantile-unbiased estimation are impossible.
Despite these restrictions, we develop minimum-distance methods that deliver
uniformly valid confidence intervals. We establish sufficient conditions under
which standard chi-square critical values remain valid, and propose a simple
bootstrap procedure when they are not. We demonstrate favorable power in
simulations and in an empirical application linking teacher gender attitudes to

student outcomes.
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1 Introduction

The delta method is a fundamental tool in econometric analysis for deriving the
asymptotic distribution of smooth functions of estimators. In its standard form, the
delta method relies on a non-zero gradient of the smooth function with respect to the
primitive parameter. When this condition holds, first-order linearization provides an
accurate approximation to the sampling distribution. However, in many empirically
relevant scenarios, the gradient may be zero at certain points in which case higher-
order terms become essential. As a result, the limiting distribution near points of
degeneracy typically differs substantially from that obtained under standard regular-
ity. A leading example arises in causal mediation analysis, where the indirect effect is
the product of two primitive parameters: the effect of the treatment on the mediator
and the effect of the mediator on the outcome. When these effects are zero, the gra-
dient of the indirect effect degenerates, leading to a nonstandard limiting distribution
of the Wald statistic (Sobel, 1982).

In practice, the researcher does not know whether the true parameter lies near such
points of degeneracy, and thus cannot know which asymptotic approximation is ap-
propriate for inference. This challenge has motivated a number of recent papers
on hypothesis testing when the gradient may be degenerate, see, for example, van
Garderen and van Giersbergen (2024) for an analysis of the mediation model men-
tioned above and Dufour et al. (2025) in a more general treatment of Wald-type
statistics. These papers acknowledge discontinuities in limiting distributions at the
point of degeneracy, and analyze the resulting distortions in Wald-type statistics.
Yet, they do not propose a unified asymptotic framework for studying local regions of
degeneracy. Moreover, most existing papers are interested in specific point hypothe-
ses, leaving open the broader question of how to construct uniformly valid confidence

intervals.

This paper makes two main contributions to the literature. Our first contribution is
a formal asymptotic framework for studying the behavior of statistics in local regions
of first-order degeneracy. In our framework, the primitive parameter is modeled as
local to the point of degeneracy, in the spirit of weak identification asymptotics, where
identifying information is local to zero. Under this setup, the behavior of simple plug-

in estimators becomes nonstandard and depends on local parameters that cannot be
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consistently estimated, formally capturing an observation in the existing literature
that the standard delta method does not properly approximate the behavior of plug-

in estimators near degenerate points (Miller et al., 2025).

Leveraging Le Cam’s limit of experiments framework (Le Cam, 1970, 1972), we show
that the problem of estimating a smooth function under degeneracy is asymptotically
equivalent to estimating a quadratic form of the shift parameter in a Gaussian shift
model. Within this model, we show that equivariant-in-law and quantile-unbiased
estimators cannot be obtained. Translated back to the original estimation problem,
these results imply that regular estimation is impossible — the limiting behavior of
any properly scaled and centered estimator in local regions of degeneracy depends on
nuisance parameters that cannot be consistently estimated. Moreover, there do not
exist asymptotically similar confidence intervals for the transformation of interest in

local regions of degeneracy.

Our second contribution is to construct confidence intervals that are both uniformly
valid and exhibit favorable power in local regions of degeneracy compared to the few
existing alternatives. The impossibility results mentioned above imply that standard
delta-method based confidence intervals may not be uniformly valid in such regions.
Indeed, in the context of mediation analysis our simulation study shows that standard
Wald-statistic based tests lead to confidence intervals that undercover when the true
primitive parameter is near the origin. We thus take a different approach and propose
confidence intervals based on test inversion with a minimum-distance test statistic.
We first show that when the parameter dimension is two, the standard chi-square
critical value is uniformly valid under either of two conditions: (i) the curvature of
the null curve is not too large, or (ii) the two branches of the null curve are sufficiently
close. These conditions hold in the leading mediation example. In more general
settings, we propose a bootstrap critical value based on a quadratic approximation
of the test statistic, and show that when the true parameter is well separated from
the point of degeneracy, the bootstrap critical value is nearly identical to the efficient

one.

We demonstrate the empirical relevance of our results in both simulation study and
real world. In simulation study our proposed methods are shown to control size uni-
formly over the parameter space while standard Wald-based inference can overreject

when the true primitive parameter is close to points of degeneracy, a finding also
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noted by Dufour et al. (2025). We additionally demonstrate favorable power prop-
erties of our proposed methods when compared to a method proposed by Andrews
and Mikusheva (2016), which turns out to also be applicable in this setting." These
improvements in power are also seen in an application to the data of Alan et al.
(2018), who consider the effect of teachers’ gender attitudes on student outcomes. In
revising their mediation analysis, we find that our proposed methods deliver tighter
confidence intervals than existing methods for all parameters. Our results support
a conclusion by van Garderen and van Giersbergen (2024) that the mediation effect
of a one-year exposure to a teacher with traditional negative views is negative, while

existing methods cannot rule out an effect of size zero.

The rest of this paper proceeds as follows. This section concludes with a review of the
related literature. Section 2 gives examples of when first-order degeneracy may be
a concern. Section 3 formally establishes the impossibility results mentioned above
and discusses implications for hypothesis testing. Section 4 introduces the minimum
distance based inference procedures and discusses how uniformly valid critical values
may be constructed. Sections 5 and 6 contain, respectively, the simulation study and
empirical application to the data of Alan et al. (2018). Section 7 concludes. Proofs
are deferred to Appendices A and B.

1.1 Literature Review

Our paper is related to previous literature on econometrics and statistics studying
inference under degeneracy, statistical impossibility results, and testing non-linear

restrictions.

There is a growing literature examining hypothesis tests in which the null includes
points of singularity. Gaffke et al. (1999) show that the distribution of the Wald
statistic at points of degeneracy is nonstandard, and Gaffke et al. (2002) derive its
asymptotic distribution under a variety of singular null hypotheses. Drton and Xiao
(2016) demonstrate the conservativeness of the Wald test at degeneracy points for
quadratic forms and for bivariate monomials of arbitrary degree. Dufour and Valery
(2016) propose rank-robust regularized Wald-type tests allowing for singular covari-

ance matrices. Dufour et al. (2025) analyze Wald tests for polynomial restrictions

Tn their original analysis, Andrews and Mikusheva (2016) were interested in testing non-linear
restrictions in the context of weak identification.
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with possibly multiple constraints and show that such tests can under-reject, over-
reject, or even diverge under the null; see also Dufour et al. (2025) for additional
references in this area. Our paper differs from this literature in two key ways. First,
prior work focuses on testing problems where the null itself contains the singularity,
while our interest lies in constructing uniformly valid confidence intervals when the
null may be near a singularity. In simulations, we show that the upper bound on
the Wald statistic derived in Dufour et al. (2025) does not, in general, yield valid
confidence intervals. Second, instead of using a Wald statistic, we employ a minimum
distance—based test statistic, which is bounded in probability by construction. This

approach avoids the divergence issues documented in Dufour et al. (2025).

Our paper is also related to the hypothesis testing problem with a curved null. An-
drews and Mikusheva (2016) study this problem and show that the distribution of
minimum-distance statistics is dominated by a tractable distribution that depends
only on the maximal curvature of the null manifold relative to the known variance
matrix. Inverting their test leads to uniformly valid confidence intervals. However,
when the curvature of the null hypothesis is large, for example, in testing the signifi-
cance of an indirect effect, their procedure yields critical values that are close to those
from projection-based methods. By contrast, our procedure exploits the possibility
that the null hypothesis may include multiple manifolds that are close to one another,

which in turn reduces the critical value.

Finally, our paper contributes to the econometric literature on statistical impossibility
results. In particular, it is related to work by Hirano and Porter (2012) who show that
regular estimation of directionally, but not fully, differentiable functions is unattain-
able. Our paper takes a similar approach to that of Hirano and Porter (2012) in that
we rule out properties of estimators by analyzing a limiting experiment (Le Cam,
1970, 1972). However, the target functional in our limit experiment is distinct from
that of Hirano and Porter (2012). This approach of ruling out behaviors by analyzing
limit experiments has also been utilized by Kaji (2021) and Andrews and Mikusheva
(2022) in the study of weak identification. Moreover, our work is related to work by
Chen and Fang (2019b) who show that all standard bootstrap procedures necessarily
fail at points of degeneracy. We view this earlier work as complementary to ours,
similarly to how Fang and Santos (2019) establish that the bootstrap necessarily fails

as an inference procedure for the functionals considered in Hirano and Porter (2012).
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2 Overview and Examples

Consider a parameter € © < R? and a twice continuously differentiable function
g : © — R. We are interested in inference on ¢g(6) in local neighborhoods of a point
0, for which Vg¢(6#,) = 0. Below, we give some empirically relevant examples of when

such a phenomenon may occur.

Example 2.1 (Mediation Analysis). Consider a causal mediation analysis with pa-
rameter 6 = (01,0,), where 0, represents the effect of a treatment variable on a
mediator and 6y represents the effect of the mediator on the outcome. The indirect
effect of the treatment on the outcome is then given by ¢(6) = 6,65. At 6, = (0,0)’,
we have Vg(0,) = 0, which complicates inference on ¢(#) in local regions of 6,.
As a result, recent works have proposed tests for the specific null-alternate pair,
Hy : g(0) = 0 against Hy : g(f) # 0, see van Garderen and van Giersbergen (2024) or
Hillier et al. (2024). However, these works do not consider the more general problem

of constructing confidence intervals in local regions of the origin. O]

Example 2.2 (Impulse Response Function). Consider an autoregressive AR (1) model
of the form vy; = Oy;_1 + u; where y;, ;1 € R, # € R, and u; € R is a white noise
process. The “impulse response function” is defined as g() = 0" and measures the
impact at time period A of an initial shock. Due to the importance of this in macroe-
conomic analysis, inference on g(6) has received attention from the econometric liter-
ature (Inoue and Kilian, 2002; Gospodinov, 2004; Mikusheva, 2012), mostly related
to inference when 6 is close to one — the so-called “unit-root” problem. However,
due to degeneracy, inference on the impulse response function can also be complicated
when 6 is close to 6, = 0 as 6—%9(0*) = ho"~! = 0 (Benkwitz et al., 2000; Liitkepohl,
2013). O

Example 2.3 (Breakdown Point Analysis). Consider a missing data setup in which
the researcher observes {Y;D;, D;, X;}"_,, where D; € {0,1} represents whether or
not an observation’s outcome Y; is observed, and X; is a set of discrete covariates,
e, X; € X = {x1,...,vx}. To achieve identification of parameters of interest,
assumptions are typically made about the selection mechanism, such as “missing
conditionally at random”, i.e, ¥; L D; | X;. Ober-Reynolds (2026) proposes assessing
the robustness of results to these assumptions through a breakdown point analysis.

This assessment involves generating a confidence interval for the squared Hellinger
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distance between Fy, the distribution of X; | D; = 0, and P;, the distribution of

X; | D; = 1. Since X; is discrete, this distance can be written as

9(0) H P07P1 =

l\')l»—t

2%—%)2

where 0,5, = Pr(X = x, | D = d). Simple sample analog estimators of 6y and 6,
are y/n-consistent and asymptotically normal under mild assumptions. However, the

derivative of g(#) with respect to the quantities 0 and 0y are given by

0 o) — 14/ Oor — /0% i o) — 1y Oor — /0%

000" 2 Bor G090 =3 n

Let 0. be a point such that 6y, = 60, for all k. This occurs if the data is missing
completely at random, that is D L (Y, X). At 6,, the derivatives above are uniformly
equal to zero and the squared Hellinger distance g(0) between Py and P; is zero.
Thus, when @ is close to 6,, that is when F, is close to P;, standard approaches to

inference on ¢(f) will fail. O

Example 2.4 (Weak IV Bias and Size Distortion). Consider a standard homoskedas-

tic linear IV model,

Yi =TS + €

x; = 20 + v;
where y;, z; € R, E[(€;,v;)'] = 0, and Z = (z},...,2.) € R"*% is treated as fixed.
When 6 is close to zero, identification is referred to as “weak” and it is well known
that standard inference procedures for f fail to control size (Staiger and Stock, 1994).
Stock and Yogo (2005) provide bounds on the size distortion of Wald tests for 5 in

terms of the concentration parameter,
g(0) =0(Z'2)0)02.

Ganics et al. (2021) extend this analysis and develop confidence intervals for the
bias and size distortion. In both papers, the researcher makes inferences about the
concentration parameter by examining the distribution of the F-statistic, a scaled
version of (), where 6 is the OLS estimate of 6. The analyses of both Stock and



OVERVIEW AND EXAMPLES PAGE 8

Yogo (2005) and Ganics et al. (2021) are complicated by the fact that the limiting
distribution of g(é) is non-standard when 6 is close to zero, that is, when identification
is weak. This can also be seen as inference in local regions of degeneracy — at 6, = 0

we have that Vg(6,) = 2(Z2'2)0/0? = 0. O

Example 2.5 (Explained Variance in Linear Regression). Consider a linear regression
model,

Y=X0+¢ E[eX]=0

and define 0% = Var(Y) and ¥y = E[X X’]. A parameter of interest is the proportion

of variance in Y explained by the linear model with X, i.e
g(0) = 0'Sx0/07,

that is, the population R?. Although empirical work typically reports only a point
estimate of R?, reporting a confidence set for R? is informative for comparing the
explanatory power or predictive performance of competing models (Hawinkel et al.,
2024). When R? is bounded away from zero and one, standard errors and confidence
intervals can be obtained using conventional asymptotic approximations (Cohen et al.,
2013). However, at 0, = 0 we have that Vg(#) = 2Xx0,/0% = 0. Consequently, infer-
ence on the explained variance is non-standard when 6 is close to zero, or equivalently,

when R? is close to zero.

This type of parameter is also of interest in labor economics when explaining variation
in wage regressions. If a model under consideration can only explain a weak amount
of variation in wage dispersion, we may expect 6 to be close to zero. Card et al.
(2013) compare the baseline Abowd, Kramarz, and Margolis (1999) (AKM) model
with various extensions in terms of each models ability to explain increases in wage
inequality in West Germany. They find that these extensions provide little explana-
tory power on top of the baseline AKM model. The additional variance explained
by these extensions corresponds to the linear regression model with Y equal to the
residual from the AKM model and X equal to the new fixed-effect terms introduced
by the extended models. They find that these new fixed-effect terms are close to zero

suggesting that degeneracy may be a concern when conducting inference on g(6). [
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3 Impossibility Results

In this section we establish that standard approaches to inference on g(f) necessarily
fail in local regions of first-order degeneracy. We begin in Section 3.1 by introducing
a parametric framework to study this problem and defining what it means for an
estimator to be “regular” in this setting. Section 3.2 then uses a representation
theorem to show that the problem reduces to estimation of quadratic forms in a
Gaussian shift experiment, where we prove that well-behaved estimators cannot be
constructed. Section 3.3 extends the analysis in two directions: first, to hypothesis
testing problems where the null hypothesis that g(6) = ¢g(#.) may hold on a nontrivial
subset of the parameter space, and second, to infinite-dimensional models, where we
show that the impossibility results remain valid so long as the model contains a
suitable parametric submodel. Together, these results demonstrate that standard

approaches to inference necessarily break down in local regions of degeneracy.

3.1 Preliminaries

We begin by assuming that the researcher observes data X™ = (X1,...,X,,) drawn

from a parametric model P, g,
x™ L P.o (3.1)

where § € © = R? and © is a compact set with a nonempty interior, ©° # §. Let X;
denote the support of X;, which could be a general space, and denote X™ = X, &;.
We assume that the sequence of statistical models (Pn’g 10 e @O), indexed by the

sample size n, is locally asymptotically normal in the sense of Le Cam (1960).

Assumption 3.1 (Local Asymptotic Normality). There exists a sequence r, —

such that for every 0 € ©° and every sequence h,, — h € R?

dp, , 1
log (%;/n(xm))) — WA, — §hT9h + Zn(h) (3.2)

where A,, converges in distribution to N(0,T'g) under the sequence of measures P, g,
A, s N(0,Ty), and Z,(h) converges in probability to zero under P, g for every
heR? Z,(h) 0.
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Example 3.1 (Smooth Parametric Models). A leading example of a model that
satisfies (3.2) is when the researcher observes i.i.d data, X; “ P, where € ©.
Assume that there exists a dominating measure p such that Py « u for all # € ©° and
the Radon-Nikodym densities py = dFPp/du are differentiable in quadratic mean, that

is there is a function ¢y such that for any 0 € ©°,

[ [V = Vi govin | du=ollb2). o 33)

and such that the Fisher information, 'y = Pgégég, is nonsingular. Let P,y = ®i", P,
then, for any # € ©° and any h,, — h € R, the sequence of log likelihood ratios satisfies
(van der Vaart (1998), Theorem 7.2):

loo [ ZEmoh/va sy ) Dosh/vmn .
o ( TR ) < g [ P )

1 &, 1
= = D Wla(X)) = SHToh + Ra(h),

where R, (h) = op, ,(1) for all h € R%. By the central limit theorem, \/Lﬁ ST (X)) o

N(0,Ty). Thus, by letting A,, = \/iﬁ - ég(Xi) we see that Assumption 3.1 is satis-
fied with r, = y/n. O

We study a twice continuously differentiable scalar functional ¢ : ©® — R, and the
behavior of estimators of g(#) in local regions of a point 6, € ©° which is such that
the first-order derivatives of g(-) at 0, are zero. We will refer to 0, as the “point of

degeneracy” and local neighborhoods of 6, as “local regions of degeneracy.”

Assumption 3.2 (Differentiability). The function g : © — R is twice continuously
differentiable on ©, a compact subset of R, with Vg(0,) = 0 and V3g(0,) # 0 for

some 0, € ©°.

Given the maintained assumption of a locally asymptotically normal model, it is
useful to examine regions close to 0, by adopting a local parameterization around 6,,
defining

Opnp = 0. + h/ry,

and letting P, = Py 9, +n/r,- In our framework an estimator is an arbitrary measur-



IMPOSSIBILITY RESULTS PAGE 11

able function of the data, ¥, : X" — R. We consider sequences of estimators, ¥,
that converge in distribution under every sequence of alternative distributions P,
to some limiting law, £;. This is denoted
h
e (Un — g(On)) > Lp. (3.4)
where we note that the convergence rate is r2 instead of 7,, due to the fact that g(#) is
“flat” around 0,. It is straightforward to show that tests for g(#) based on estimators

whose convergence rates are slower than r2 when 6 is close to 6, have trivial power

against local alternatives of the form ¢(6, + h/r,).

Example 3.2 (Plug-In Estimators). Suppose the researcher has access to an estima-
tor 6 of 6 that satisfies

Tn(é — Onp) IR VY
for every h € R?. In the smooth parametric models described in Examples 3.1, such
an estimator could be the maximum likelihood estimator or a Bayes estimator such
as the posterior mean. Since g(-) is assumed to be twice continuously differentiable,

the limiting behavior of the plug-in estimator g(¢) can be found via the second order
delta method

N / 1 /
r(9(0) = 9(B)) > WV g(BIW + S W'V (0.)W

~

The behavior of the plug in estimator, g(f), depends on the local parameter h. [

We focus on ruling out regular and locally asymptotically a-quantile unbiased esti-

mation of g(6, ) in local regions of §,. Formally, these notions are defined as follows.

Definition 3.1 (Regularity). Let ¥, be an estimator satisfying (3.4), and let « €
(0,1).

(i) W, is regular if its limiting distribution does not depend on h, i.e. there exists
a distribution £ on R such that £, = £ for all h € R%.

(ii) W, is locally asymptotically a-quantile unbiased if its limiting a-quantile is zero
for every h, i.e. L,{(—0,0]} = «a for all h € R<.

The existence of regular estimators is closely tied to the validity of Wald-type inference

procedures — without regular estimators, standard Wald-type inference procedures
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that compare test statistics to fixed critical values will not have correct asymptotic
size. Similarly, the existence of locally asymptotically a-quantile unbiased estimators
is closely tied to the existence of asymptotically similar confidence intervals for g(#)
in local regions of #,. Since any asymptotically similar confidence interval of the form
(—o0, ¢] can be converted into a locally asymptotically a-quantile unbiased estimator
by taking W, = ¢, by ruling out such estimators we also rule out the possibility of

similar one-sided confidence intervals.'

3.2 Analysis in the Limiting Experiment

To examine the possible behavior of such estimators, we make use of a representation
result, given below in Proposition 3.1, which is a slight adaptation of Theorem 8.3 in
van der Vaart (1998). This earlier result is, in turn, a version of Le Cam’s limit of

experiments analysis for locally asymptotically normal models (Le Cam, 1970, 1972).

Proposition 3.1 (Limit Experiment). Suppose Assumption 3.1 holds, and let V,, be
a sequence of estimators satisfying (3.4). Then there exists a randomized statistic

U (Z,U), where Z is drawn from the Gaussian shift experiment
Z ~N(hT,", heR
and U ~ Unif(0, 1) independent of Z, such that

U(Z,U) = ih"V?g(0.)h ~ Ly for all he R

Proposition 3.1 establishes an equivalence between estimating ¢(6) in local regions of
first-order degeneracy and estimating of a quadratic form of the mean parameter in a
Gaussian shift model in which one observes a single draw Z ~ N (h, Ty 1), where Fe_*l
is known but A is not. In particular, in a spirit similar to the approach in Hirano and
Porter (2012), we can rule out sufficiently regular behavior of estimators of g(6) in
local regions of 6, if the corresponding behavior is not permissible in the Gaussian shift

model. Intuitively, sufficiently regular estimation of quadratic forms in the Gaussian

!The focus on one-sided confidence intervals is largely for simplicity of exposition. If (—o0,¢;] and
[é2,00) are two asymptotically similar confidence intervals for g(f) each with coverage rate 1 — «/2
and ¢ < é with probability approaching one, then [éz,é1] is asymptotically similar with coverage
rate 1 — a.
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shift experiment is not possible since the parameter of interest changes non-linearly
as the mean parameter h varies over R? while the distribution of Z changes in a linear

fashion.

To illustrate, suppose that there was an estimator, W(Z, U), and law, £ with Sx2 dL(x)
o0, such that W(Z,U)— 30/ V2g(0.)h is distributed according to £ for all h € R%. Since
any such estimator can be turned into an unbiased estimator by subtracting off the
mean of £, it is without loss of generality to assume that £ is mean zero and thus
that W(Z,U) is unbiased. On the other hand, the Cramér-Rao lower bound for the

variance of any unbiased estimator of %h’ V2g(0,)h in the Gaussian shift model yields
Var(¥(2,U)) = K (Vg(6.))Ty. (V?g(0.))h. (3.5)

By letting h vary over R?, the right hand side of (3.5) can be made arbitrarily large
while the left hand side is bounded by the second moment of £. Thus, no such
estimator can exist. Our full argument relies on analyzing characteristic functions,

but the intuition is similar.

Remark 3.1. It is instructive to compare the argument sketched above to the ar-
gument of Hirano and Porter (2012), who rule out regular estimation of g(f) when
g is directionally, but not fully differentiable at a point 6,. The Hirano and Porter
(2012) argument relies on analyzing the behavior of a potential regular estimator as
the local parameter h approaches zero. Our arguments, on the other hand, rule out
regular estimation by analyzing the “global” behavior of a potential regular estimator,
that is, the behavior as h varies over R%. The approach taken by Hirano and Porter
(2012) does not apply in the present setting as the parameter of interest in the limit
experiment is non-linear but continuously differentiable at zero. In contrast, in the
limit experiment of Hirano and Porter (2012) the parameter of interest is a function
x(h) which is exactly linear around values of h # 0, but is not continuously differen-
tiable at zero. The argument of Hirano and Porter (2012) is able to additionally rule
out locally unbiased estimation whereas in our setting locally unbiased estimation is

possible. O]

Proposition 3.2. Let Z ~ N(h, F;}) and U ~ Unif(0, 1) independently of Z. Let J

be a d x d non-zero, symmetric matrix.

1. There is no randomized statistic V(Z,U) and law L on R with V(Z,U)—h'Jh L
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L for all h € R?.

2. Let { Ly} pera be a system of probability measures on R such that (i) Ly{(—00,0]} =
a for some o € (0,1) and (i) the CDFs associated with Ly, Fy(-), are differ-
entiable at zero with derivative bounded below by some € > 0. Then, there does
not exist a randomized statistic V(Z,U) such that V(Z,U) — W Jh ~ Ly, for all
h e R4,

Together, Propositions 3.1 and 3.2 can be combined for the main result of this section,

which rules out sufficiently regular estimation in local areas of first-order degeneracy.”

Theorem 3.1 (Impossibility of Regular Estimation). Suppose Assumptions 3.1 and 5.2
hold.

1. There is no estimator sequence V,, and law L on R such that

r2 (‘I’n — g(@mh)) I for all h e RY.

n

2. Let {L}}hera be a family of distributions such that (i) Ly{(—0,0]} = a for some
fized a € (0,1) and all h, and (i1) the CDFs, F,(-), of Ly are differentiable
at zero with derivatives bounded below by € > 0. Then there is no estimator

sequence V,, such that

r2 (\Ifn — g(9n7h)) s L, for all h e R%
Theorem 3.1 rules out sufficiently well-behaved estimation of ¢g(f) when the true
parameter is “close” to 6,. In particular, Theorem 3.1(a) rules out the possibility
of regular estimation — the properly scaled and centered behavior of any estimator
U, of g(f) must depend, in local regions of 6,, on the local parameter h, which
cannot be consistently estimated. Similarly, Theorem 3.1(b) rules out the possibility
of a-quantile unbiased estimation. As mentioned below Definition 3.1, this result
has profound implications for inference on g(f) in local regions of 6,. In particular,
both asymptotically exact Wald-type inference procedures and asymptotically similar

confidence intervals for g(f) are unavailable in local regions of degeneracy 6,.

%In the application of Proposition 3.2 to our setting, take J = %VQg(H*). The result in Propo-
sition 3.2 rules out well-behaved estimation of any quadratic form of the shift parameter, not just
those associated with the Hessian of g(-).
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Theorem 3.1(a) also has implications for the construction of efficient estimators of
g(#) in local regions of 0,. Standard notions of efficiency are tied to comparing the
asymptotic risk of regular estimators. Theorem 3.1(a) shows that, after properly
scaling, such regular estimators are not available in local regions of degeneracy. Con-
sequently, alternative notions of efficiency must be considered in these settings and
standard estimators may not be optimal in these regions. As an example, one can
show that estimators of g(6) that are efficient under a standard asymptotic regime
can be dominated by alternative estimators in local asymptotic mean squared error

around points of degeneracy.

Remark 3.2. As with the impossibility of locally asymptotically a-quantile unbiased
estimation for directionally but not fully differentiable parameters established in Hi-
rano and Porter (2012), the result in Theorem 3.1 requires some regularity conditions
on the system of limiting laws {£,},era.” The regularity condition in Theorem 3.1(b)
implies that, if a locally asymptotically a-quantile unbiased estimator were to exist,
its associated limiting laws £, must be able to be made arbitrarily flat. In partic-
ular, if each limiting law L£; has a density with respect to Lebesgue measure, these
densities evaluated at zero, which is by definition the a-quantile of each £, must be
able to be made arbitrarily small. As an example, suppose that {L,},cra is a family
of Gaussian distributions on R associated with a locally asymptotically a-quantile
unbiased estimator. Then, the variance of these Gaussian distributions must be able

to become arbitrarily large as h ranges over R, O

3.3 Hypothesis Testing and Infinite Dimensional Models

The above analysis rules out standard approaches to inference on g(#) in local regions
of 0,. These results are informative when one is interested in constructing confidence
intervals for g(#) around points of first-order degeneracy when the data is drawn from
a parametric model satisfying Assumption 3.1. In this subsection, we consider two
extensions of our results. In the first, we consider the somewhat simpler problem of
testing the null hypothesis Hy : g(0) = ¢(6.). We show that if the null hypothesis
contains a sufficiently rich set of values and a similar test exists, this similar test

must have low power in local regions of 6,. In the second extension we generalize

3Let Fy(-) be the CDF associated with L£o. Hirano and Porter (2012) show that, for any a-
quantile unbiased estimate, it must be the case that either Fy(-) is not differentiable at zero or must
satisfy Fy (0) = 0.
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Theorem 3.1 to infinite dimensional, i.e, semiparametric or nonparametric, models.

3.3.1 Hypothesis Testing

In this subsection we consider the problem of testing the null hypothesis Hy : g(0) =
g(0.) where the alternative can be one sided, i.e, Hy : g(f) > g(f.) or two-sided,
Hy : g(0) # g(0.). To setup, define H, to be the set of local parameters, h € R, such
that g(6,, ) is asymptotically indistinguishable from g(6,), i.e, 72(g(6n.1) —g(6x)) — 0;

H, = {he R : K'V?g(0,)h = 0}.

We study the behavior of asymptotically similar tests in local regions of degeneracy.

In this setup, an asymptotically similar test is a statistic =, : X™ — {0, 1} such that

limsup Py, ,(E, =1) =« forall heH,.
n—00
Equivalently, the test is similar if lim sup,, ,, P, ,(1—-Z, <0) = a. Letting ¥,, = 1~
=, it is apparent that this is a nearly identical requirement to that of local a-quantile
unbiasedness in Definition 3.1, with the key difference being that the requirement

only needs to hold for local parameters h € H, rather than for all h € R

However, unlike quantile unbiased estimation, which is ruled out in Theorem 3.1,
asymptotically similar tests can exist — one can imagine constructing a similar test
by flipping a weighted coin. Such a test, though, may not be powerful against local
alternatives close to #,. Our main result in this subsection establishes this formally:
if such test exists then its local asymptotic power curve must be flat at 6, in the
sense that the derivative of the local asymptotic power curve with respect to the local

parameter h exists and is equal to zero.

Define the local asymptotic power curve as

P(h) = limsup Py, , (E, = 1) (3.6)

n—0o0

Proposition 3.3. Let =, be an asymptotically similar test such that P(h) is differen-

tiable at h = 0. Then, the directional derivative of the local asymptotic power curve,
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P(h), in directions h € H, is equal to zero:
DyP(0) =0 for all heH,.

In particular, if V2g(0,) is indefinite then H, spans R? and VP(0) is equal to zero.

Remark 3.3 (Differentiability of P). A common strategy in hypothesis testing is to
compare a test statistic U, to a possibly data-dependent critical value ¢, rejecting
when the former exceeds the latter. Let ¥, = ¥> — ¢,, so the rejection rule can be
written as =, = 1{V¥,, > 0}. If ¥, s L, for each h € R, and if the CDF of £, is
continuous at zero, then the resulting local asymptotic power curve P is differentiable
at 0; see Lemma A.3. This is a milder version of the regularity condition imposed on

quantile unbiased estimators in Hirano and Porter (2012). O

The first statement in Proposition 3.3 follows immediately from the definition of
similarity along with the fact that #, is a cone: because P(h) is constant on H,,
its directional derivatives in directions h € H, must be zero. The force of the result,
however, lies in the structure of H* near points of degeneracy. In standard inference
problems, i.e, when the true parameter is well separated from points of degeneracy, the
parameter of interest in the limit experiment is a linear function of the shift parameter
h, so H* = {0} and the zero-derivative condition carries no information about the
shape of the power curve. By contrast, when g exhibits first-order degeneracy H.,, can
be a non-trivial cone — that is, it may contain directions other than zero — and the
constraint D, P(0) = 0 for h € H, becomes substantive. When V?2¢(6,) is indefinite,
H, spans R? and the entire gradient of the local asymptotic power curve vanishes at
the origin, implying that power cannot increase at a linear rate in any direction away

from 6,. The following examples illustrate the strength of this restriction.

Example 2.1, cont. Consider again the mediation model, where the original model
is given (Py : § € © < R?). Suppose the researcher is interested in testing the
null hypothesis Hy : 6,62 = 0, that is g(f) = 6,0 and 6, = 0. We can show that
H, = {h € R* : hyhy = 0}. Since H, is the union of the two coordinate axes,

span(H,) = R?. Thus, we have that VP(0) = 0 for any asymptotically similar test.

We can equivalently show that #, must span R? by noting that the second derivative
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(o)

which is indefinite. O

matrix of g(-) at 6, is given by

Example 3.3 (Squared Mean). On the other hand consider the case where 6 =
(61,0,) € R? and the researcher is interested in testing the null hypothesis Hy :
0? + 05 = 0. In this case g(0) = 67 + 03, 0, = 0, and H, = {(0,0)}. Since V3g(0,) is
positive definite, span(,) = {0}. Thus, the results of Proposition 3.3 do not apply
and powerful similar tests for the null hypothesis Hy : 67 + 635 = 0 can be constructed,
see e.g Chen and Fang (2019a). O

Example 3.4 (Standard Inference). Suppose that the primitive parameter is univari-
ate 0,5, = 6o + h/r, € R, and local to a point 6, such that ¢'(fy) > 0, that is we are
well separated from points of degeneracy. In this setting, the researcher typically has
access to an estimator U,, that satisfies r,,(V,, — g(6,..n)) A N(0,0?). This estimator
is regular and thus a-quantile-unbiased for all a € (0,1). Based on this estimator, an
asymptotically similar one sided test for the null hypothesis, Hy : g(0) = g(6y), can
be constructed with local asymptotic power curve P(h) = 1 — ®(¢;_ — ¢'(6o)h/0),
where ®(-) is the standard normal CDF and ¢;_, is its 1 — a quantile. Here,

i P()],_y = 9'(0)9(c1-0) /o > 0.

Remark. Recent papers by van Garderen and van Giersbergen (2024) and Dufour
et al. (2025) also study tests of the null hypothesis Hy : g(6) = ¢(6,) in various
contexts. van Garderen and van Giersbergen (2024) consider the case of the mediation
model, that is where 6 = (01,605)" and g(0) = 61605. They assume that the researcher
has access to an asymptotically normal estimate of 6, 0 = (él, 92)/ and show that there
is no reasonable similar test of the form: reject if max{|6;|, |62} > g(min{|0y], |6]}),
where ¢(-) may be an arbitrary function. Similarly, Dufour et al. (2025) consider the
behavior of Wald type tests based on :che test statistic W,, = %, where X
represents the asymptotic variance of 6. The authors show that, when 6 is close to
0., the behavior of the Wald statistic can be irregular and propose alternate critical

values for testing the null hypothesis Hy : g(0) = g(f,) using W,,.

We view our results as complementary to these existing results. The results in Propo-

sition 3.3 are narrower in their conclusion — we establish only that similar tests must
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have flat power at * — but broader in their scope, since they apply to any test-
ing procedure that depends on the data, rather than only to procedures based on a

specific initial estimator 0. n

3.3.2 Infinite Dimensional Models

In many settings the researcher may not be willing to assume that the data comes from
a finite dimensional parametric model as described in the previous section. Following
a tradition on studying semiparametric efficiency (Bickel et al., 1993), we show that
this does not affect our impossibility results so long as the larger model contains a

parametric submodel satisfying Assumptions 3.1 and 3.2.

Formally, let the model P be a collection of sequences of probability measures on the
sample space X" from the previous section. That is, each element of P is a sequence of
probability measures { P, }, where each probability measure P, is defined on the sample
space X". A finite dimensional submodel, Py, is some smaller collection of sequences
of probability measures that can be parameterized as Py = ({Pnp}nen : 0 € ©) for an
open set © € R%. Fix a “centering” sequence of probability measures {Pp, }nen € P.
We say that the submodel passes through {F,,} if { Py} € Py, that is {P,} = {Pne}
for some # € ©. We will call such a parametric model “regular” if Assumption 3.1
holds and the model passes through {Fp,}.

We suppose that the object of interest is a quantity that depends on the sequence of
underlying probability measures, that is we can think of the estimand g[{P,}] as a
functional defined on P. For any regular parametric model, Py, this implicitly defines
a function on 6 via the relation g7(0) = g[{P,0}]. With this notation defined, we
show that the results of Theorem 3.1 can be extended in a straightforward fashion to

infinite dimensional models.

Remark 3.4 (Semiparametric Models with i.i.d Data). In the literature on semipara-
metric estimation with i.i.d data, where the researcher observes repeated observations
drawn independently from a probability distribution P on X belonging to a model
P (Bickel et al., 1993), one can associate the entire sequence of probability measures
{® P :n e N} with the underlying common distribution P. With this association,
one can consider the model P described above as a collection of probability mea-

sures on X rather than a collection of sequences of probability measures {F,} where
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each P, is defined on X™. The parameter, in turn, can be defined as a function of
the underlying distribution P rather than as a function of the entire sequence by
g[P] = g[{®!_, P : n € N}]. However, when dealing with time-series or network data,
it may not be possible to define the parameter as a function of some representative

underlying distribution and is instead a property of the sequence {P,}. O

Corollary 3.1 (Impossibility in Infinite-Dimensional Models). Suppose the data are
generated from a sequence of distributions {Py,} € P. Let Py < P be a regular para-
metric submodel passing through { Py}, and suppose that g; satisfies Assumption 3.2
with {Py9,} = {Fon}

1. There is no estimator sequence V,, and law L on R such that, along every reqular

parametric submodel Py,

r2(U, — gp(0, + h/ry)) P> L for all he RY.

2. Let {Ln}, e, be a family of distributions such that (i) Ly{(—0,0]} = a for
some « € (0,1) and all h, and (ii) each Ly, has a CDF, Fy,, differentiable at zero
with derivative bounded below by € > 0. Then there is no estimator sequence

U, such that, along every reqular parametric submodel Py,

2 (Vo — g5 (0. + h/rn)) s Ly for all h e RY.

4 Minimum Distance Based Inference

In this section, we construct a uniformly valid confidence interval for g(f) : © — R
using estimator 8. The confidence interval is obtained by inverting the hypothesis

Hy : g(0) = 7, and we use a minimum distance (MD) test statistic

~ A~ ~

_ 200 _ pyiy—1(h _
T"(T)_ee@}%)zfrn(e 6)X (0 —0).

We focus on the settings where the standard first order approximation of ¢g(6) fails

at 0,, but the second order derivative is nondegenerate; that is, %(ﬁ*) = H with H
full rank.

In Section 4.1, we discuss a simple case where ©® < R? and H is indefinite, and we
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provide sufficient conditions under which the standard critical value Q(x3,1 — «) is
uniformly valid. In Section 4.2, we propose a computationally simple method for a

general g, which can be generalized to cases with higher order singularity.

4.1 Two-Dimensional 6 and Indefinite H
To simplify notation, consider the null hypothesis
Hy: g(61,05) := (1+ p)b; — (1= p)b; =7, (4.1)

with [p| < 1 and 7 > 0. The restriction |p| < 1 guarantees that H is indefinite,
while 7 > 0 is a normalization. For simplicity, let n = r, = 1, and assume 0—0~
N(0, I3). The quadratic form g and the normality of f can be viewed as second order

approximations, with general asymptotic results provided in Theorem 4.1.

Let X5(6;) € R, be the positive solution for 65 such that (4.1) holds. Let Sy(7) be

the null parameter space, which contains two separate curves, S (7) and Sy (7),
So(7) = 85 (1) U Sy (7)
where
S5 (0) = { (@1, Xalon) sar e R}, S5 (1) = { (w1, Xa(e1)) 12y € R},

Let S(7,¢) be the acceptance region with critical value ¢?, i.e., the c-enlargement of

So (T)a

S(7,¢) = {(z1,22) : (x1 — 01) + (22 — 62)> < 2, (61,62) € So(7) }.

Proposition 4.1. Let ¢ = /Q(x?,1 —«) and 0—0 ~ N(0,1I3). Suppose either
% <2 orp=0. Forall 0 e Sy(r), it holds that
T(14+p

P(éeS(ac)) >1-—a.

Proposition 4.1 shows that the standard MD test remains valid under a curved null



MINIMUM DISTANCE BASED INFERENCE PAGE 22
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Figure 4.1: Acceptance Regions under Low (Left) and High (Right) Curvature.
Red curves represent S;(7) (left) and So(7) (right). Black dash curves represent the boundaries of S*(7,c) (left)

and ST (7,¢) and S™(7,¢) (right). “*” represents 6, and the blue curves represent dB(f,r) for some r > c.

1—p
T(1+p)’

small, or when the two branches 8§ (7) and Sy (7) are sufficiently close. The argument

hypothesis when the maximum curvature of Sy (7), given by is sufficiently

proceeds by comparing the coverage of S(7,¢) with that of the auxiliary acceptance
set,

Saux = {(21,32) © (22 — 62)> < *}.

whose coverage is exactly 1 —a. Expressed in polar coordinates, the coverage depends
on the fraction of each circle of radius r centered at € S; (), denoted 0B(6, ), that
is contained in the acceptance region. Consequently, it suffices to show that, for each

r, the arc length of dB(0,r) contained in S(7,¢) is no smaller than that of Syy,.

When r < ¢, the entire circle is covered by both S,,, and S(7,¢) by construction.
For r > ¢, let C,(7) and C,(7) denote the upper and lower boundaries of S*(, ¢); see

Figure 4.1 left panel. If 1(_1‘1 ; < 1, the circle 0B (0,r) intersects C,(7) at points A
T(1+p

and B, and C,(7) at points C and D. We can show that the lengths of chords AC
and BD are no smaller than 2¢c. Otherwise, B(G, c) € S*(r,c), where G denotes the
intersection of AC' with S (7), contradicting the definition of ST(7,¢). Note that
the arcs of dB(0,c) covered by S, correspond to chords of length 2c. It therefore

follows that the portion of 0B(,c) covered by S(7,c¢) is larger than that covered by
Saux-
—A—2_ > 1 ¢,(7) has a kink due to the high curvature. Thus, there exist 6 € Sy ()

If 2

and r > ¢ such that 0B (0, r) does not intersect C,(7); see Figure 4.1 right panel. For
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such (0,r), the argument based on chord lengths no longer applies. However, when
p =0, 0B(0,r) is sufficiently close to Sy (), and we can show that 0B ((61,6s),7) =
S(t,c).

Next, we present the asymptotic results for general data generating processes.
Assumption 4.1. Suppose that

1. V?g(0,) has full rank.

2. Let BLy denote the set of Lipschitz functions which are bounded by 1 in absolute
value and have Lipschitz constant bounded by 1. Assume there exists r,, — o0
such that

n—=% peP feBIL,

lim sup sup |Ep [f (\/ﬁ (é—@p))] — Ep [f (fp)] =0,

where Ep ~ N(0,3p).

3. Let S denote the set of matrices with eigenvalues bounded below by e > 0 and
above by € = e. For all Pe P, ¥peS.

4. For alle > 0,
lim sup P <Hf) — ZPH > 5) = 0.

n—00 pep
Assumption 4.1.1 assumes that the second order derivative of ¢ at 6, is of full rank,
so that there is no higher order degeneracy. Assumption 4.1.2 requires that the re-
searcher has access to an estimator 6 that is uniformly asymptotically normal over the
class of DGPs considered while Assumption 4.1.3 and Assumption 4.1.4 require that
the asymptotic variance of this estimator is well-behaved and consistently estimable.
Since degeneracy is a property of the transformation of interest, g, rather than of
the primitive parameter 6, these are mild conditions that can be verified for most

common estimators 0.

Theorem 4.1. Suppose d = 2, and let ¢ = A/Q(x3,1— ). Let (Ap1,\p2) be the
eigenvalues of sign (g(Qp) —g(e*)) Z}D/QHZ}P, and define pp = 2PatAP2 - Assume

|)\P,1*)\P,2|
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that Assumptions 5.2 and 4.1 hold. If for some n > 0, it holds that either

(1—pp) ‘)\Pl—)\PQ} 1
P, PeP: < -, ppen—1,1-n] (4.2)
2rn\/’g Op) — ) (1 + pp)
or
P.c{PeP:ppel0,1-n]}, (4.3)
then

liminf inf P< (9(6p)) < 2) >1-—a.

n PePy,

Theorem 4.1 follows from Proposition 4.1. To see this, let g(h) = g(@,, + 7’;121/%) ,
where r, governs the rate at which 6 is estimated and X adjusts for the covariance.
For h = O(1), g(h) can be approximated by a hyperbola, as in (4.1). Condition (4.2)
ensures that the curvature of g(h) is not too large, while (4.3) implies that the two
branches of the hyperbola are sufficiently close. The result remains uniformly valid

even as |h| — oo.

Remark 4.1. To illustrate Theorem 4.1, consider g(0) = 6,05, as motivated by Exam-

0 1 Uf ro109

ple 2.1. In this case, H = Lol With Xp = , we have A\p; =

ro1oy 05
sign (9(913)) (r—1) o109, Ap2 = sign (9(913)) (r+1)0109, and pp = sign (9(913)) r
Therefore, (4.3) holds when r = 0, and the MD test with the simple critical value
yields a uniformly valid confidence interval for the mediation effect. It is worth not-
ing that, the rejection region for 6,6, = 0 is given by min {\él\, ]9}]} >Q(x3,1—a),
which coincides with the rejection region of the likelihood ratio test. The latter is the
uniformly most powerful invariant test among information- and size-coherent tests
(van Garderen and van Giersbergen (2022)). If sign (g(6p)) r < 0, then (4.2) is satis-

fied when —Y71z(+Ir] 1 Since 01, 05 and r can be consistently estimated, and
rug/201=Ir)]g( epy ¢

g(0p) is known under Hj, conditions (4.2) and (4.3) are straightforward to verify in

practice.
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4.2 General Cases

In this section, we present the inference procedure for a general function g. The
procedure is based on a local approximation of the test statistic. First, consider the
case where the true parameter value 0, satisfies 0,, = 6, + h,,/r,,. Under Hy, the test

statistic is given by

~ ~ /AN ~ ~ ~ ~ 2
Tu(g(6)) =  inf 12 (0 - 19) o (0 - 79) — 2 Hz-m 64,
(o) =, il 00
where 6, denotes the minimizer. Since T},(g(6,)) HZ 12(9 —9,) H = 0,(1), w

have 0,, = 0, —I—Op(%). If h, = O(1), a second order Taylor expansion of g(6,) = g(0 )

gives
r2(0, — 0,)H (6, — 0,) = hl,Hh, + 0,(1).
In addition, let Z,, = rn2*1/2(é —0,), we can write
PS8 = 6,) = 1SV (0= 00) + (6 — 0.) — (B — 0.))
= 2y + 572 (hy = 10 (B0 = 6.))
In sum, let ¢ = rn(én —40,), given h,,, we can approximate T, by

T#(h,) =  inf

. 2
7+ 52 (h, — H 4.4
t:4/ Ht=h! Hhy, * (hn = 1) (44)

where Z|T,,(g(6,)) ~ N(0, I;). We can show that T, (g(6,)) and T*(h,,) have the same
asymptotic distribution, regardless of whether h, converges to h € R or diverges
to infinity (Lemmas B.7 and B.8). Intuitively, if h, — oo, the restriction for the
optimizer £ in (4.4) is approximately linear. In this case, both T,,(g(6,)) and T*(h,,)

are approximated x?.

Given h,, we can easily get the quantile of Tj(hn) by simulation. However, h,, is a
nuisance parameter that cannot be consistently estimated. Next, we propose a two

step feasible critical value. Suppose set H. satisfies P (N (0,14) € ’HZ) =1-n!In

'For instance, H, = {z e R?: 2'2 < Q(x3,1 —n)}.
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the first step, we construct a (1 — n) confidence set for h,,
H=r,(0—0,) —SVH,. (4.5)

In the second step, we construct the critical value based on the i%f; quantile of T;f(h)

conditional on the first step. That is, let

. 1—
¢ =supQ <Tj(h)’ZeHZ; a), (4.6)
heM I—mn

and reject Hy : g(0) = 7if T),(7) > ¢. In (4.6), the construction of ¢ takes into account

the first step selection, thus it is less conservative than simple Bonferroni correction.

Theorem 4.2. Under Assumptions 3.2 and /.1, it holds that

liminf inf P (Tn(g(epn)) < é) >1-a.

n PeP
In addition, if Hrn(Qpn —0,)| — o,
lim P, (Tn(g(epn)) < c> ell—a,1—a+n). (4.7)

The slight conservativeness arises from the two-step procedure. Alternatively, we can
introduce a pretest to check whether h,, is far away from zero, e.g. ||h,|| > Inr,. If
so, we can use the standard critical value Q(x%,1 — a). The cost is that we need to

introduce an extra tuning parameter.

Remark 4.2. In general, if H is singular and g is higher order identified, we can
construct the critical value using a similar two step procedure. In the first step, we

construct a 1 — n confidence set O for . In the second step, we define the critical

value as ,
¢ =su inf HZ—i—rni"l/Q@—ﬁ‘ 1l—a+ )
geg @ <19:g(19)—9(9) ( ) K
Hy : g(0) = 7 is rejected if Tp,(1) > ¢ O

Remark 4.3. Dufour et al. (2025) show that when g is a vector-valued function and
the degree of singularity differs across elements of g, the Wald-type test statistic may

diverge, complicating inference. In contrast, the MD test considered in this paper



SIMULATION PAGE 27

yields a test statistic that is first-order stochastically dominated by x3, regardless of
the level of singularity in g. Moreover, Dufour et al. (2025) focus solely on hypothesis
tests at a fixed point, i.e., testing g(0) = g(0,), whereas this paper aims to construct

uniformly valid confidence intervals. m

Remark 4.4. Andrews and Mikusheva (2016) construct a uniformly valid MD test
based on a geometric approach that incorporates the curvature of the null restriction
g(0) = 7. When the curvature is large, their procedure may yield overly conservative
critical values. For example, consider the mediation analysis problem in Examples 2.1
where one is interested in testing the null hypothesis Hy : 160, = 7. As 7 approaches
zero, the curvature of the null manifold can be made arbitrarily large and the critical
value of Andrews and Mikusheva (2016) approaches Q(x3,1— a). However, as shown
in Section 4.1 of this paper, a uniformly valid critical value in this setting is Q(x3,1—
«). Indeed, even when 7 is far from zero, the Andrews and Mikusheva (2016) critical

value is always larger than Q(x?,1 — «). O

5 Simulation

In this section, we examine the size and power properties of the proposed procedures
and compare them with several alternatives. We focus on the context of Example 2.1,
namely the construction of confidence intervals for the mediation effect. In addition to
the two MD-based methods proposed in Section 4, one using the Q(x?,1 — «) critical
value (BN1; Section 4.1) and one using a bootstrapped critical value (BN2; Section
4.2), we consider two uniformly valid MD-based alternatives: (i) the procedure of
Andrews and Mikusheva (2016) (AM)," and (ii) the MD-based method with projection
critical value Q(x3,1 — «). For comparison, we also include the naive delta method,
i.e. a Wald-type test with critical value Q(x?,1 — «), and a naive bootstrap method.

The nominal rejection rate is a = 0.05, and the tuning parameter for BN2 is n = «/10.

We study confidence intervals for g(f) = 60102, where the estimators are simulated

"We report results using their Section 4.1 implementation, which computes curvature over a
restricted set with tuning parameter n = «/10. We also implemented their worst-case curvature
procedure from Section 2. The two procedures have nearly identical power, with the latter performing
slightly worse.
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from
A 1 r
0—0~N 0,[ ]
r 1

Without loss of generality, we normalize the variance of 6 to one. We consider r = 0
and r = 0.5, with 0, € {2,6} and 0; = [—1:0.2: 1] x 65.

In Figure 5.1a, we plot the probability that the confidence intervals exclude the true
value g(0). The naive method does not overreject when 6,0, = 0, but its rejection
probability is very low near the origin, consistent with earlier findings (e.g., Dufour
et al. (2025)). Away from the origin (see, e.g., §; = 6, = 2), the naive Wald test
overrejects. According to Remark 4.1, BN1 is valid for » = 0. For r = 0.5, Theorem
4.1 does not guarantee validity when 6; < 0, 6, = 2, or when 0, € [—1.4,0), 0 = 6.
Nevertheless, BN1 maintains correct size across all designs, even when these condi-
tions fail, suggesting that the condition is sufficient but not necessary. As expected,
all other MD-based methods control size.

Figure 5.1b shows the probability that the confidence intervals exclude zero, i.e., the
probability of obtaining a significant result. When 6 is close to the origin (6, = 2),
our methods have substantially higher power than AM, whose performance is close
to that of the simple projection method. When 6 is further from the origin (65 = 6),

power curves across methods are nearly identical.

Finally, Figure 5.1c reports the median length of the confidence intervals, computed
across S replications. BN1 consistently yields the shortest intervals, with BN2 close
behind. The projection method is the most conservative, producing intervals 19-30%
longer than BN1. AM lies between BN1 and the projection method, with median
lengths 5-18% longer than those of BN1. The differences are most pronounced when

6 is near the origin.

6 Empirical Application

We illustrate the empirical relevance of our results using the setting analyzed by
Alan et al. (2018). Their study takes advantage of a distinctive feature of the Turkish

education system, in which elementary school teachers are randomly allocated across
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schools. This institutional detail generates plausibly exogenous variation in teacher
characteristics that can be used to study how teachers’ gender role attitudes influence
student outcomes. The data include roughly 4,000 third- and fourth-grade students
taught by 145 teachers, and students can be grouped according to the length of their
exposure to a given teacher — at most one year, two to three years, or up to four
years. The treatment variable is whether a teacher is identified as holding traditional
rather than progressive gender beliefs, while the mediator of interest is the student’s
own gender role beliefs. Following a similar analysis of this data in van Garderen and
van Giersbergen (2024), we focus on verbal test scores as the outcome. Alan et al.
(2018) argue that, after controlling for an extensive set of student, family, teacher,
and school characteristics, the identifying assumptions for causal mediation analysis

are satisfied in this context.

Exposure 91 t(@l) 92 t(@g) 01 : 92 n
Full sample | 0.199 | 3.140 | -0.119 | -5.343 | -0.024 | 1885

1 year 0.256 | 2.052 | -0.097 | -1.941 | -0.025 | 499
2-3 years 0.109 | 1.065 | -0.125 | -4.163 | -0.014 | 906
4 years 0.064 | 0.513 | -0.113 | -1.931 | -0.007 | 468

Table 1: Estimates of Mediation Effects by Teacher Exposure

Table 1 reports estimates from the Alan et al. (2018) analysis linking teachers’ gender
role attitudes to students’ verbal test performance. The first coefficient, él, comes
from a regression of students’ gender role beliefs on the gender role attitudes of their
teachers, with the standard set of student, family, teacher, and school controls in-
cluded. This coefficient summarizes the extent to which traditional teachers transmit
their views to students. The second coefficient, ég, is estimated from a regression of
test scores on both student gender beliefs and teacher attitudes, again with the full
set of controls. It reflects how student beliefs are associated with verbal performance
once teacher attitudes are held constant. Multiplying these two coefficients gives the
mediated, or indirect, effect: the part of the teacher’s influence on scores that oper-
ates through the channel of student beliefs. The estimates show that this indirect
pathway is negative and relatively small, although it varies across exposure groups,

being largest in the one-year sample and smallest for students exposed for four years.

Because the true mediation, or indirect, effect appears to be close to zero, the results

of Section 3 suggest that standard approaches to inference will fail. In particular,
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we cannot construct valid confidence intervals via the typical approach of inverting a
t-test. Instead, we construct confidence intervals using the newly proposed methods
of Section 4. van Garderen and van Giersbergen (2024) show that the correlation

coefficient between 6; and 0y is zero; consequently, both of our methods are uniformly

valid.!

Exposure Full 1-Year 2-3 Year 4 Year
Point Estimate —0.024 —0.025 —0.014 —0.007
«— Interval Length — «—0.032— «—0.070 — «—0.053 — «—0.070 —
95% BN1 CI [-0.042,—-0.010] [-0.071,—0.001] [—0.042, 0.010] [—0.045, 0.025]
«——0.034 —> «—0.076 —> «—0.058 —> «——0.076 —>
95% BN2 CI [—0.044,—-0.010] [-0.075, 0.001] [-0.046, 0.012] [—0.049, 0.027]
«——0.038 —> «—0.086 —> «—0.068 —> «—0.094 —>
95% AM CI [—-0.046,—0.008] [—0.083, 0.003] [-0.052, 0.016] [—0.059, 0.035]
«—0.042 — «——0.092 — «——0.070 — «—0.096 —>
95% Projection CI | [—0.048, —0.006] [—0.085, 0.007] [-0.052, 0.018] [-0.059, 0.037]

Table 2: Mediation Effect in the data of Alan et al. (2018)

Confidence Intervals are generated by inverting the corresponding tests. Values are rounded to three significant figures.

We compare our confidence intervals to two other inference procedures that might be
applied in this setting, both of which are based on the minimum distance statistic.
The first alternate procedure is that of Andrews and Mikusheva (2016).” This testing
procedure technically does not cover the case where we are testing the null that the
mediation effect is equal to zero since the null manifold is not smooth in this case.
However, the Andrews and Mikusheva (2016) critical value approaches Q(x3,1 — «)
from below as the null hypothesis value approaches zero and Q(x3,1 — «) is a valid
critical value for testing the null that the mediation effect is equal to zero so we simply
modify the procedure slightly to directly use a Q(x3,1 — «) when the null value is
— «) at all

points, which is justified since, under the null hypothesis, the distance to the null

equal to zero. The second method, “Projection”, simply uses the Q(x3, 1

manifold is always less than the distance to the point (61, 6,)’.

Consistent with the discussion in Section 4, the confidence intervals based on either

the x? critical value (BN1) or the two-step procedure (BN2) are uniformly tighter

IThe validity of BN1 follows from Remark 4.1.

In implementing the test, we follow the empirical application in the working paper version of
Andrews and Mikusheva (2016) and only calculate the maximum curvature over a set “close” to the
point estimate, adjusting the critical value accordingly.
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than those obtained from the Andrews and Mikusheva (2016) simulated critical value
(AM); in all specifications, our intervals are strict subsets of theirs. The difference
is not only theoretical but also empirically relevant. Using the x? critical value, for
instance, the BN1 confidence interval supports the conclusion of van Garderen and
van Giersbergen (2024) that the mediation effect of a one-year exposure to a teacher
with traditional views is negative, whereas the alternative methods cannot reject
a null of zero at the five-percent level. As expected, the AM intervals lie strictly
inside those generated by the projection method, which uses a 2 critical value at
all points. However, because the true mediation effect appears small in this setting,
their simulated critical value converges toward Q(x3,1 — «), which accounts for the

close similarity between the two sets of intervals.

7 Conclusion

We examine inference in local regions of first-order degeneracy, meaning that the gra-
dient of the transformation is zero or nearly zero so that first-order approximations
alone do not provide reliable information and second-order terms must also be con-
sidered. In such regions of local degeneracy, we show that neither regular estimation
nor quantile-unbiased procedures are feasible, paralleling impossibility results for non-
differentiable functionals and ruling out standard approaches to inference. We then
develop alternate inference procedures based on minimum-distance statistics that
deliver uniformly valid confidence intervals. Simulation studies indicate that these
procedures control size while maintaining favorable power, and the empirical appli-
cation to teacher gender attitudes shows that they yield tighter confidence intervals

than existing approaches.
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A Proofs and Supporting Results for Section 3

Proof of Proposition 3.1.
Proof. Define S,, = 72(¥,, — g(6,)). Via a second order Taylor expansion, we have

S, = r?

o (Pn —g(64))
=12(U, — g(0s + h/ry)) + 1r2(g(0s + h/rn) — g(6.))

1
Ao L+ SV g(0)h

where in the last line we use the fact that equation (3.4) holds for any h € R¢ by
hypothesis. Since the experiment {F, : § € ©°} satisfies Assumption 3.1 with non-
singular Fisher information I'y,, by Theorem 7.10 in van der Vaart (1998) there is
a randomized statistic ¥(X,U) in the Gaussian shift experiment {N(h,I';') : h €
R?} such that ¥(X,U) has distribution £, + 1h'V?g(6,)h when X ~ N(h,T,").
Equivalently, U(X,U) — s'V?g(6,)h L. O

Proof of Proposition 3.2.

Proof. (a) We proceed by contradiction, assuming there is an equivariant in law

estimator. The characteristic function of the recentered estimator is given by
(s) = Eplexp(is(¥(Z,U) — h'Jh))] (A1)

where, by assumption, ¥(s) does not depend on h. Let ®y(s) = Ey[exp(is¥(Z,U))]
and notice that (A.1) implies that we can decompose ¥ (s) exp(isf(h)) = ®,(s) where
we let f(h) = h'Jh to save notation. We start by showing that ®,(s) is twice

continuously differentiable in A and deriving expressions for the derivatives.

For the first derivative, consider a point hy € R? and a deviation in the direction h of
size r. We save notation by letting I' = I'y, and justify bringing the limit inside the
integral by the uniform integrability condition of Hirano and Porter (2012), Lemma
1(b).

1

lrlf{)l ; [(I)ho+rh(3) - (I)ho(s)]
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= lrif(r)l % J[M] fexp(islll(z, u)){p(z|ho + rh, T — ¢(z|ho, T 7'} dz du
_ J[O ! Jexp(islll(z, ) lim %{gb(z|h0 +rh, T — é(zlho, T} dz du
= J[o ] Jexp(is\lf(z, u))(z — ho) Tho(z|ho, I~ 1) dz du
1
=Ep,[exp(isV(Z,U))(Z — hy)'|Th
Since h is arbitrary here, we can rewrite the above as

V() = Ep,[exp(is¥(Z,U))(Z — ho)'|T

where the gradient is understood to be with respect to the argument hg, i.e s is
kept fixed. For the second derivative, we repeat the argument, again letting h be an
arbitrary direction in R? and justifying bringing the limit into the integral via Hirano
and Porter (2012), Lemma 1(b) along with the fact that Ep,[| exp(is¥)(Z — ho)|] is

uniformly bounded over hg:

liml[VCI)hO+Th(s) — V&, (s)]

rl0r
1{ J Jexp(is\lf(z, u))(z — ho)T{¢(z|ho + rh, T™) — ¢(2|ho, T ™1)} dz du
[0,1]

— f fexp(is\If(z, u))rh'Té(z|ho + rh, T 1) dz du}
[0,1]
1
_ J Jexp(iS\IJ(z, w))(z = ho) T ~T{o(zho + rh,T) = (el o, T1)} d du
[0.1] e
— f Jexp(is\ll(z, u))W/'T lim ¢(z|ho + rh, T 1) dz du}
[0,1] rl0
= hTJ Jexp(z's\lf(z, u))(z — ho)(z — ho) ¢(z|ho, I 1) dz dul’
[0,1]

— AT J Jexp(is\lf(z, u))(z|ho, T 1) dz du
[0,1]

= W'TEp|exp(isV(Z, U))(Z — ho)(Z — ho)'|T — W'T Ey,[exp(is¥(Z,U))]
Again, since h is arbitrary we can write this

V2®,,,(s) = TEy,[exp(is¥(Z,U))(Z — ho)(Z — hg)']T — @4, (s)T (A.2)
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The first and second derivatives of exp(isf(hg)) with respect to hy can be expressed

Vexp(isf(ho)) = 2isexp (isf(ho)) Jho

(A.3)
VZexp (isf(ho)) = exp (isf(ho)) (2isJ — 4s*(Jho)(Jho)')

Recall that, by assumption, ®p,(s) = 1(s) exp(isf(ho)) for all hy. Pick an s # 0 such
that ¢ (s) # 0. This is possible since ¥(0) = 1 and 9 (-) is continuous. Combining
(A.2) and (A.3) yields, for any hg, that

(s) exp (isf(ho)) (22’&] — 432(Jh0)(Jh0)')

(A4)
—TEy [exp(isU(Z, U))(Z — ho)(Z — ho)'IT — By ()T

Notice that since |exp(is¥(z,u))| = 1 and |®p,(s)| < 1 for all hg, the operator norm
of the RHS of (A.4) is bounded uniformly over ho € R%. On the other hand, looking
at the LHS of (A.4) we can see, using |A + B| = |B| — | A/, that

ILHS| = [4(s)| (4[| Tho[* — 2Is[[7]) -

Let v be such that ||Jv|| # 0 and let hy = cv for some ¢ > 0 so that ||Jho|? =
c?||Jv|?. By sending ¢ — o we can thus make |LHS| arbitrarily large, leading to a

contradiction since |[RHS| is uniformly bounded over hq € R%.

(b) Let h be such that h'Jh # 0. Since J is assumed symmetric and non-zero, it is

guaranteed that such an h exists. For any r > 0, we have that
a = Paimn(W(Z,U) < (1 +7)h)J((1 +7)h))
In particular,
0=a—a=Pump(Y(Z,U) <((1+7)h)J(L+r)h) — P(¥(Z,U) <hJh)
and thus

0= 13%1{% [P(Hr)h(\If(Z, U) < (1+7r)2R.Jh— P, (W(Z,U) < (1+ r)2h’Jh)]
- % [Ph (U(Z,U) < (1 +7r)*WJh) — P, (¥(Z,U) < h’Jh)] } (A.5)
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Letting Fj(z) = P,(¥(Z,U) < ) and applying the uniform integrability in Lemma
1(a) of Hirano and Porter (2012) to justify exchanging limits and integrals as in the

proof of Lemma A.1, we obtain for any A
h'To, Ep[1{¥(X,U) < h'Jh}(X — h)] = 2(W' Jh)F, (W' Jh)

From here, take a constant ¢ > 0 and consider the behavior of the LHS and RHS as
¢ — . Notice that for any ¢ > 0 ||ch'Ty,| < ¢ while |E,[1{V(X,U) < h'Jh}(X —
h)]| < 1 by Cauchy-Schwarz. Meanwhile, 2((ch)'J(ch))occ?F!, ((ch)'J(ch)). Recall
Fy(WJh) = P(Y(Z,U)—h' Jh <= 0)and ¥(Z,U)—h Jh ~ Ly, F,(K Jh) corresponds
to the CDF of L, evaluated at zero. By assumption, there exists an € > 0 such that
F/(WJh) = € for all h. Since ¢*F/,((ch)'J(ch)) — o0 as ¢ — o0 we arrive at a

contradiction. O

Proof of Theorem 3.1.

Proof. Theorem 3.1 follows directly from Proposition 3.1 along with Proposition 3.2.
O

Proof of Proposition 3.3.

Proof. The first claim follows immediately from the definition of similarity as well as
the fact that P(h) is differentiable at zero. For the second claim, it suffices to show
that for an indefinite symmetric d x d real matrix J the isotropic set H; = {h € R¢:
h'Jh = 0} spans R% To do so, let us diagonlize J = QAQ’ where Q is orthogonal
satisfying Q'QQ = I and A = diag(A,...,\g) is a d x d diagonal matrix containing
the eigenvalues of J. Because () is orthogonal, it suffices to show that the isotropic

set of A, Hp = {h e RY: W’ Ah = 0} spans R

Without loss of generality, let us assume that Ay > 0 and Ay < 0. Let e1,...,eq4
denote the standard basis vectors in R?. We wish to show that each e; € span(H,)
for j =1,...,d. If A; = 0 then trivially e; € H, < span(H,). Suppose that \; > 0.
Define t; = (—=X;/A2)"2. Consider u} = ¢; + tje; and u; = ¢; — tjep. Then, notice
that

ujAuJ+ =\ + t?>\2 =0 and wu;Au; = A\; + t?}\Q =0
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1
2
The case where A\; < 0 follows symmetrically.

so that v € Hy and u; € Hy. Since ej = 5(u; + uj) it follows that e; € span(H,).

The claim in Remark 3.3 follows from Lemma A.3. m
Proof of Corollary 3.1
Proof. Follows directly from Theorem 3.1. ]

Lemma A.1. Suppose that V(Z,U) is a statistic in the Gaussian shift experiment
{N(h,T;") : he R} and let H = R? be a cone such that, for some a € (0,1),

1
a=h, <\I/(Z, U) < Eh'v2g(c9*)h> ,  forallhe™H.

Let Fy(-) denote the CDF of W(Z,U) under h = 0. Assume that the derivative of Fy
exists at zero. Then h'Ty, Eo|1{V(Z,U) < 0}Z] =0 for all h e H.

Proof. The proof of the following lemma closely follows that of Proposition 1(c) in
Hirano and Porter (2012). To simplify notation, let J = $V?¢(6.). For any r > 0 we
have that

o= Py (¥(Z,U) < (rh) J(rh)) .

Evaluating the above expression at r > 0 and r = 0 yields
O=a—a=PF, (\II(Z, U) < (rh)’](rh)) — Py(¥(Z,U) <0).
and thus

0 = lim {% [Pm(\y(z, U) < (rh)J(rh)) — Py (9(Z,U) < (rh)’J(rh))]
(A.6)

N % | Py (9(2.0) < (rh) T (rh)) = Py (9(2,U) < 0) | }

Each of the terms on the RHS of (A.6) exist, so we can write the limit of the sum
as the sum of the limits. Let ¢(-|u, X) denote the pdf of a normal distribution with
mean g and variance Y. Consider the first term. Applying the uniform integrability

condition in Lemma 1(a) of Hirano and Porter (2012) to justify interchanging limits
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and integrals below, we obtain

liml[Prh(\I/(Z, U) < (rh)'J(rh)) — Po(¥(Z,U) < (rh)'J(rh))]

rl0 T

[¢(z|rh, T ") — ¢(2]0,T,1)] dz du

rl0

= lim f[m] Jl {¥(z,u) < (rh) J(rh)} x

S|l 3|

|0 [¢(Z’T’h, FG_*I) - ¢(Z|07 Fe_*l)] dz du

_ f[ . f lim 1 {(z,u) < (rh) J(rh)} x
_ f[o,l]fl{w<27u) <0) (%gﬁ(zﬁz, F9j>ﬁ_0hdzdu

_ 0T, J f (=, 1) < 0}26(2]0,T5) d= du
[0,1] ’

Since the derivative of Fiy(-) at zero exists and Z(rh)'J(rh)| o = 0, the second term

r=

on the RHS of (A.6) evaluates to zero. Thus, we obtain for any h # 0 that

0= T, J f LW (=, 1) < 0}26(20,T5 ) d= du
[0,1] ’

which gives the result. O

Lemma A.2. Let U(Z,U) be a statistic in the Gaussian shift experiment {N(h,T';"), h €
R?} such that for (i) for some a€ (0,1) and cone H <= R,

1
a=D, (\If < §h’V2g(9*)h) for all h e H,

and (1) the CDF of W(Z,U) under h = 0, Fy(-) is differentiable at zero. Consider
the level « test based on T, that is the test that rejects if W(Z,U) < 0. Define
P(h) = P(Y(Z,U) < 0) the power curve for this test. This power curve is flat

around zero in the direction h in the sense that DyP(0) exists and is equal to zero.

Proof. Consider a deviation in the direction h. Define Pp(r) = P, (VY (Z,U) < 0).
We want to show that

i7’}»(?“)!,30 iy D2, U) < 0) — Py(¥(Z,U) < 0)

=0
or 10 r

Let us expand the above limit and, as in the proof of Lemma A.1, invoke Lemma 1(a)
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in Hirano and Porter (2012) to justify exchanging a limit and an integral below.

L), —hmf Jmf 2 u) <0} x -[ (2[rh, T51) — (200, T54)] d= du
or ri0 Jio1 .

fo1 fl{‘y z,u) < 0} thl[ ¢(2|rh, Tyh) — ¢(2]0, T 1) dz du

= h’Fg*f fl{\IJ(z,u) < 0}26(2(0, T, ) dz du
[0,1]

— WTy, Bo[1{¥(Z,U) < 0}7]
~0

where the final equality comes from Lemma A.1. O

Remark A.1. The proof of Lemma A.2 could be obtained almost directly from the
proof of Lemma A.1. However, the statement of Lemma A.1 additionally implies
that Covo(1{V(Z,U) < 0},Z) = 0, which is also an interesting restriction on any

a-quantile unbiased estimate. O

Lemma A.3. Suppose Assumption 5.1 holds at 0, with Fisher information Iy, . Let
U, be a real-valued statistic and consider the test =, = 1{V,, = 0}. Let P be the local
asymptotic power curve defined in (3.6). Suppose that ¥, s Ly, for each h € RY, and
let Fy be the CDF of Lo. If Fy is continuous at zero, then P(h) = lim, . Py, , (E, =
1) for each h, P is differentiable at 0, and

VP(0) = Ty, Eo[1{¥(Z,U) = 0}7],

where Z ~ N(O,F;}), U ~ Unif(0,1) independently of Z, and V(Z,U) is a ran-
domized statistic in the Gaussian shift experiment {N(h,T';") : h € R} such that
V(Z,U) ~ Ly, for all h.

Proof. By Theorem 7.10 in van der Vaart (1998), there exists a randomized statistic
U(Z,U) in the Gaussian shift experiment {N(h,T';") : h € R?} such that U(Z,U) ~
Ly, for all h. Since Fp is continuous at zero, Py(¥(Z,U) = 0) = 0, and by mutual
absolute continuity of N(h,I';") in h we also have P,(¥(Z,U) = 0) = 0 for all h.
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Thus, by the Portmanteau theorem,

P(h) = lim Py, (¥, = 0) = P,(¥(Z,U) = 0).

n—0o0

Fix h € R? and define G(z,u) = 1{¥(z,u) > 0}. For r € R, let P,; denote the law of
Z ~ N(rh,T;"). The likelihood ratio satisfies

df%h
dP,

(Z) = exp(rh'Te,Z — 3r°W'Ty,h)

so P(rh) = Ey [G(Z, U)exp(ri'Te, Z — %7’2]1/1_‘9*]1)]. Differentiating at » = 0 and
invoking Lemma 1(a) of Hirano and Porter (2012) to justify exchanging limits and

integrals we obtain:

ZP(rh)| = WTy, E[G(Z,U)Z].

or r=0
Since the right-hand side is linear in h, P is differentiable at 0 with gradient VP(0) =
Ly, Eo|G(Z,U)Z]. O

B Proofs for Section 4

B.1 Proofs of the Main Theorems

We first introduce notation for the results in Section 4.1. Let C,(c) and Cy(c) be the

upper and lower boundaries of dS*(7, ¢),
Cu(c) = {(cu,l(xl,c), Conlr1,0)) 71 € R\(—x;*,x;)} (B.1)

where

(1 = p)xy
VL p)PXo(21)? + (1= )%}

c(1+ p)Xa(xy)
CuQ Iy1,€) = X2 I ’
2 = o) @ + (L= pa?

Cu,l(l“bc) =T —
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(1-p)?=(+p)7 . 2(1—p)?
< —— B
= V2 /1—p if 7 < 1+p
¥ =

0 otherwise

)

and the lower boundary is

Ci(c) = {(0571(951,0),0@72(%,0)) ST € R} , (B.2)

where

c(1 = p)xy
V14 p)?Xo(w1)? + (1 - p)2a?

_ 1) — c(1+ p)X(71)
Cealm, ¢) = Xalo) \/(1 ¥ p)2Xo(21)2 + (1 — p)2a?

CgJ(SL‘l,C) =x +

Details on the calculation of C; and C, are given in Lemma B.2.

If 7 < S5 et the kink of C, (7, ¢) be

K:<O7\/§V62(1—p)+7>. (B.3)

1—p?

Let 7(6;) denote the distance between O = (01, X5(6;)) and K,
7(61) = d ((61, X2(61)), K) . (B.4)

Let B ((xl, Ta), 7") denote the ball centered at (x1, z5) with radius r, and 0B ((:cl, Ta), r)
its boundary (i.e. the circle). Let AB be the arc from A to B, and AB the line seg-

ment.

Proof of Proposition 4.1.

Proof. This follows from Proposition B.1 and B.2. O

Proposition B.1. Let 7 > U2 and |p| < 1. For all 0 = (01.62) € Sf(7),
(Z4, Zy) ~ N(0, I),

P ((Z1 + 91,22 + 02) € S+(7'7 C)) =>1—-a.
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where
ST(r,¢) = {(z1,22) 1 (w1 — 1) + (22— 02)° < &, (61, 65) € S5 (1)} .

Proof. The proof is based on Lemma B.1, with § = S*(7, ¢). Condition 1 of Lemma
B.1 holds trivially. We now verify Condition 2 of Lemma B.1. Let » > ¢. By Lemma
B.5, @B (6,r) intersects Sy () at a minimum of two points I and J, with I to the
left of J. See Figure B.1. By Lemma B.4.1, there is a point P in 0B (6,r) above
curve C,(7,c). Therefore, there is at least one point on 0B (6,r) between P and [
that intersects C,(7,c). Let the closest point (if there’s more than one point) to I be
point A. Similarly, define B as the point on 0B (0, r) between P and J that intersects
Cu(7,c) and is closest to J. By Lemma B.4.2 there is a point ¢ on 0B (0,r) below
curve Cy(T, ¢). Therefore, there is at least one point on 0B (0, r) between () and [ that
intersects Cy(7, ¢). Let the closest point (if there’s more than one point)Ato I be point

C'. Similarly define D between @ and J. Therefore, by construction AIC < §*(r,¢)
and BJD < §*(1,¢).

To show that length (A?C) + length (B;D) > 4rarcsin 7, it suffices to show that

length <E) > 2c and length (ﬁ) > 2c.

By contradiction, assume that length <A_C> < 2¢. Let AC intersects S; (1) at point
G, then B(G,c¢) & S*(7,¢), which contradicts the definition of S*(7,¢). Therefore,
Condition 1 and 2 of Lemma B.1 hold, and

P ((Z1 + 91, oy + 02) € S+(T, C)) =>1—a. (B5)

This completes the proof. n

Proposition B.2. Let 0 < 7 < % and p € [0,1). For all = (0y,605) € So(7),
(Z1,Z5) ~ N(0, 1),

P ((Zl + 61,22 + 92) € S(T, C)) =>1-—a.

Proof. The proof is based on Lemma B.1 with S = S(7,¢). WLOG, let 6 € S (7).
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Figure B.1: Illustration of Proposition B.1.
Red curves represent S('f (7). Black dashed curves represent the boundaries of ST (7,¢). “*” represents 6, and the blue

curves represent dB(6,r) for some r > c.

By Lemma B.4.1 and B.4.2, for all |0, > z%, the coverage is at least 1 — o with the

same argument as in Proposition B.1.

For 6, € (—z%,z3). If r > 7(61), where 7(0;) is defined in (B.4), 0B (O, r) intersects
with C, at least two points, since (i) by Lemma B.4.3,

i%f d(z,0) =d(K,0)=7(0) <,

TECy
(i)

sup d(z,0)= sup d(x,0)=o0.

2€Cy,x1>0 z€Cy,x1<0

Therefore

‘length (0B (8,7) n S*(r, c))‘ > 4r arcsin;

following from the same argument in Proposition B.1.

Then we show that for r € (¢, 7(61)],

‘length (0B (0,r) N S)) = 27r = 4rarcsin ; (B.6)

By Lemma B.4.4, 0B (6,r)nCy(c)n{(0,z) : = 0} = &. By Lemma B.4.3, 0B (6, 7)n
Cu(c) = &. Therefore, B (0,7) n {(0,z) : 2 = 0} = S*(7,¢). Case 1: if

B(0,r) n{(0,22) : 20 < 0} = &,
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then (B.6) holds. Case 2: if 3(x1,0) € 0B (6,r), by Lemma B.6.2,

B(0,r) n{(0,z) :z <0} =S (1,0).
In sum, 0B (0,r) < S(r,¢). O
Proof of Theorem 4.1.

Proof. There exists a subsequence F,; € P, such that

liminf inf P (Tn(g(ép)) < c2> = lim P,, <Tn(g(9n)) < 02> where 6,, = 0p .

n PePy, j—0 J J n
Since © is compact, the sequence {6, } is bounded and thus has a further subsequence
nj such that limnj, Hnj, =0, € O, limnj, rnj,(an, —0,) =he R%J_roo], limnj, anj =
R, and pp, — p. With slight abuse of notation, we will refer to this convergent

subsequence as {f,} from here on. In addition, we use n instead of P, for subscript
in A\, R, and p.

Case 1. Iflim, 6,, = 0, + 0., standard minimum distance arguments (see, for example
Section 9.1 in Newey and McFadden (1994)) imply that

lim P, (Tn(g(en)) <Q(21— a)) >1-a
Case 2. Suppose 0, = 0, and lim, r,(6,, — 0,) = h € R% We first normalize the

problem to match the notation in Proposition 4.1. WLOG, assume A\,2 > A, ;.

There exists an orthogonal matrix R,, such that

At 0 Ao — Ay pu—1 0
sign(g(6,) — g(0.)SYV2HDY? = R | R, = 2w~ Znl Ry.

Define

D= B0, 0. = R0, g, (0) = DI ZICD (e )
n,2 = \n,1
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By construction,

0G (Vs )
oY

0*§(Wan)  sign(g(bn) —g(6y)) , 1
— ) n * 3 /2H21/2 /
0 29 v P

Let 9, = R,%"Y20,. Under Assumption 4.1, it holds that rn(ﬁn — ) 4, N(0, I5)

~ p—1 0

uniformly when lim,, r,,(6,, — 6,) = h € R*. Let H =
0 p+1

Under Assumption 4.1, by the almost sure representation theorem, there exists a

probability space with random variables Z,, and Z defined on it such that (i) Z,, has

~

the same distribution as r, (3, — 9,), (ii) Z ~ N(0, 1), and (iii) Z, = Z. Define
Bn = Tn('lgn - ﬁ*,n)a

~ ~ 2
T0(9(6,) = inf ranz*/Q(e—e)H

0:9(0)=g(6x)

= inf

N 2
r RSV2(0— 0 H +o,(1
0:9(0)=g(6n) ( ) r(1)

= inf

2
4+ 0,(1
9:gn (4,0 +0=04,n)=3n (9n) (1)

(0 — 93) + hy — (0 — 9, )

i + 0,(1).

(0 —0,) — (x — hy)

= inf
V:gn (7.9*,71 +7”7:l-73)=§n ('1971)

The second line follows from rn(é —0) = O,(1), with # denoting the optimizer, and

from the consistency of 32, The third and fourth lines follow from rearranging terms.
It follows that T}, ~ T}, + 0,(1), where

2

Tn = inf Zn - (ZL' - hn)
9:Gn (9x,n+7n ) =Gn (9n)
Let
T = inf HZ — (z — h)HQ. (B.7)
x:x' Hr=h'Hh

By Lemma B.7, T,, = T + 0,(1). Moreover, by Lemma B.11, T" is continuously dis-
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tributed. Hence
limP,(T, <) =P(T <c*)=1—a,

where the inequality follows from Proposition 4.1 with condition either
WHB = lim4r2 (§(9,) — §(9.))

. 4sign(g(6,) — g(64)) ,
~1
17rln )\n,Q - )\n,l rn

or pe[0,1—n].

Case 3. Suppose 6,, — 0, and lim,, r,(6,, — 0,) — oo0. Define s, = & r,. By

1
[10n—041]
= 1, so there exists a subsequence such that lim s, (6, —

construction, Hsn (0, — 0,)
0,) = limh, = h € R)\{04}. Similar to Case 2, let Z,, has the same distribution as
2A:_l/an(én - 971)7

T, = inf Ly — n12y

2
w:g(bntri @) =g(0) H

Note that T,, ~ T,,. By Lemma B.8, T), = T + 0,(1), where

2

r- g s os
Since WH # 0, T ~ x?, it holds that
lim P, (T, < A =PT<c?)=1-a
0

Proof of Theorem 4.2.

Proof. There exists a subsequence P,; € P, such that

liminf inf P <Tn(g(9n)) < c) — lim P, (Tn(g(enj)) < c> .

n PePy, J

Since © and S are compact, the sequences {0, } and 3,;; have further subsequences ny,
such that limy 0, = 0, € O, lim,,, 7, (0, — 0,) > h € Rfiw], and lim, ¥, — X e S.
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With slight abuse of notation, we will refer to this convergent subsequence as {n}

from here on.

Case 1. If lim,, 0,, = 0, + 0., standard minimum distance arguments apply and will
show that 7}, (g(6,)) % y2. Let z € H.. By construction, h,, = rn(& 0.)-Sy 2 e H.
In addition, ﬁn/rn = (05 — 0,) # 0, and since H has full rank, (“hhﬂ EN (ﬁz_f’;)*“ £ 0.
By Lemma B.9,

~ N 2
T () = inf HZ - 2—1/29;H + 0,(1). (B.9)
The critical value
. A 1 -«
¢=Q <T:(hn) ZeHsiq )
—1

h'x=0

2 1—
-0t ol Jze =) o
-

where the inequality follows from h, € H and the equality follows from (B.9) and the
2
continuity of inf,—g HZ — 2*1/233H . By Lemma B.12,

11—«

_ 7]) € [Q(X%v 1- Oé), qx%,17a+?7> :

oo Jo- = Jme sy

By the continuity of the limit distribution of 7}, it holds that

limPn<Tn<é>e[1—oz,1—oz+n).

Case 2. 0, = 0, and lim,, r,(6,, — 0,) = h € R%. Similar to the proof of Theorem 4.1
Case 2, T,,(9(0,)) ~ T + 0,(1), T*(hy,) ~ T + 0,(1), where h,, = r, (6, — 6,),

2
T= inf HZ V2 h)H .

! Hr=h'Hh

By Lemma B.11, T is continuously distributed, thus ¢ % Q(T|Z € H., = T ) Note
that h,, € H is equivalent to rn(en —0,) € H,. To see the coverage rate,

P (Tn(g(en)) < c> >P <T (9(6,)) < & hy, € 7—[)
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_p <Tn(g(€n)) <7, € H) +o(1)

=P (T <c|ZeH,)P(ZeH.)+o(l)
11—«

==, (1= 1) +o0).

Case 3. If 0,, — 6, and lim,, r,(0,, — 0,) — oo. Similar to the proof of Theorem 4.1
Case 3, Ty, (g(0,)) ~ T+ 0,(1), T*(hy) ~ T + 0,(1), where T is defined in (B.8), which
is x7. The same argument as in Case 1 applies here, together with Lemma B.12, it
holds that

lim P, <Tn(g(9n)) < c> ell—a,1—a+n).

The lower bound is binding when £k = 1. O

B.2 Lemmas

Lemma B.1. Fiz § = (01,05) e R?, ¢ = \/Q(x?,1 — ). If the set S satisfies
1. B(#,c) = S.

2. For allr > ¢,

(eB(0,r) n 5)‘ > 4r arcsin ©.
Let 0 — 60 ~ N(0,1,). Then
P(feS)=1-a

Proof. The key idea of Lemma B.1 is to compare the coverage probability of S that

of an auxiliary acceptance set

Saux = {($1,I2) (2o — 92)2 < 62} .

It is trivial that P (é € Saux> = 1 — a. We will show that the coverage probability of
S is bounded below by that of Syu.

To simplify the comparison, we switch to polar coordinates. Let 6 = (0147 cosw, Oy +

rsinw),

8 2
P (é € Saux) = %J J [(rsinw)® < ?] dw exp(—%)rdr
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c 2 +% 4arcsin ¢ 2
= J exp(—r—)rdr + f —Fr exp(—r—)rdr. (B.10)
o 2 ) o 2

=C

To see (B.10), note that if r < ¢, then (rsinw)? < ¢ for all w e [, 37]; if r > ¢,

2753
then

3
(rsinw)? <t we [—g, §7r]

Sw e [— arcsin(g), arcsin(g)] v [71’ — arcsin(f), T+ arcsin(f)] :
r r r r

Now consider P (é € S). By Condition 1 and 2,

. B 1 +00 1 -~ 7»2
P (9 e 3) - LO - llength (@B (0,r) ~ S) ] exp(— 5 Jrdr
c 2 0 ¢4 in ¢ 2
= Jr_o exp(—%)rdr + L_C % exp(—%)rdr. (B.11)

This lower bound matches the expression in (B.10), which completes the proof. An

illustration of Lemma B.1 is provided in Figure B.2. O]

10 10

-2 -2

Figure B.2: Lemma B.1: Acceptance Region of Linear and Curved Null.
The red curve shows the null parameter space So(7). Shaded areas denote the acceptance regions Saux (left) and
S (right). “*” represents the true value 6, and the blue circles represent B(6,r) with bold segments indicating the
portions inside the acceptance regions. If, for all r, the bold segment in the right panel is longer than that in the left,

then the acceptance rate of S is at least 1 — a.
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Lemma B.2. The boundary 0S* (7, c) can be characterized by two curves. The upper
one is Cy(c) defined in (B.1) and the lower one is Cy(c) defined in (B.2).

Proof. C,(c) and Cy(c) are obtained by shifting S; () a distance ¢ along its normal di-

. . c2(1—p)2
rection. Note that with 7 € (0, (11+;) |, for all € (—a%, z}), (Cui(z1,¢), Cua(z1,0))

is an interior point of S* (7, ¢), thus not included in C,(c). By construction, C,(c) u
Ci(c) < S(r,¢).

Then we show that C, and C, are the boundaries of S*(7,¢). First, we show that C,
is convex. Let (7 ; and Cj, be the first and second order derivatives of C,; with

respect to z,
PCus  CiaCiy = CosClly
dcz (CL,1>3
3/2
(L—p)7 ((p+ )7 +2(1 — p)ai)

N = T <((1+p)7+2(1—p)ﬁ)w—C(l—pQ) T)

-1

d2Cy 2
dC’i1

The sign of is the same as ((1+ p)7 +2(1 — p)x%)?)/z —c(l=pY)r. If7 >

A (1-p)?
Tp’ then

(Q+p)T+2(1— p)yz:f)?’/2 —c(l=p) 7= (A +p)7+ 0)3/2 —c(l=p*)7
=114 p) (@49 —e(1-))

> 7(1+p) ((1 + p)l/Qc(ll—_fp) —c(1- p)) — 0.

If e [0, 022,

1+p

(1+p)7+2(1 - ,o)xf)?’/2 —c(l=p) 7= (Q+p)T+2(1- p)xi‘Q)g/z —c(l=p")7
=c*1—p)P—c(l—p*)7=0.

420, :
Thus 5z+* = 0 and C, is convex.
u,l

Next, by Lemma B.3, the connecting line of (C’uyl(:vl, c), Cya(z1, c)) and (x1, Xo(21))

is orthogonal to the tangent line of C, at (Cy1(z1,¢), Cua(z1,¢)). In addition, since
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C, is convex, C, is above its tangent line. This implies that Va;
d ((x1, Xa(21)),C) = d ((ml,Xg(:El)) , (cu,l(xl,(;),cu,z(xl,c))) ¢ (B.12)
This also implies that for all (Cy1(z1,¢), Cyua(x1,¢)) € Cy,
¢ = d((Cui(z1,0),Cunl1,0), S5 (7)) = ¢,
where the first equality follows from the fact that

d ((5(71, XQ(ZL‘l)), (Ou,l(xly C), Cu’Q(ZL‘l, C))) = C

and the second inequality follows from (B.12), i.e.
d ((C’wl(xl, ¢),Cua(z1,0)) ,SS_(T)) >d(C,, S5 (1) = iglgllfd (Cus (21, Xo(21))) = c.

Therefore, C, is the upper part of the boundary of S*(7,¢).

To show that C; is on the boundary of 8§ (7), note that by Lemma B.3, the connecting
line of (Cy1(z1,c), Coa(z1,c)) and (z1, Xa(z1)) is orthogonal to the tangent line of
Sy (1) at (21, X2(21)). In addition, since

d*Xy(21) _ (1—p)r -0,

dz? «/1+p(7‘+(1—p)ﬁ)3/2

Sy (7) is convex. Thus S; (1) is above its tangent line. This implies that

a((Coalor ), Coalor, ), S5 (7)) = e
Thus C, is the lower part of the boundary of S* (7, ¢). O

Lemma B.3. Let x; € R\(—z%,z7).

1. The perpendicular bisector of (0571(91;1, c), Cpa(xy, c)) and (Cuyl(xl, c), Cua(zy, c))
is tangent to S (1) at (1, Xo(z1)).

2. The connecting line of (Cy1(z1,¢),Cun(z1,¢)) and (Cpi(z1,¢),Coa(z1,c)) is
orthogonal to the tangent line of C, and C, at these points.
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Proof. To show 1. It is easy to verify that

(Cz,1(9017 c) + Cya(z, C)) = I,

(Cw(xl, c) + Cya(xy, c)) = Xo(z1).

N — DN~

In addition,

Cua(z1,¢) — Cpa(xy, ) _ (1+p)Xa(x1)  dXa(zq) _ (1—p)x;
Cui(zy,¢) — Cpa(xy, ) (1—p)xy dzy (1+ p)Xa(xy)
Cua(zy,¢) — Cpa(xy, ) dXo(xq)

=— = -1

Ou,1(9617 C) - 08,1(3317 C) da

This completes the proof.

To show 2, straightforward calculation shows that

dCu,2 . C&,Q . dX2($1)
dCu’l B ! B dl‘l ’

u,l

dCe,z . 02,2 dXQ(CUl)

dCé,l B 0271 B dl’l

By the first part, the connecting line of (Cy1(21, ¢), Cu2(21, ¢)) and (Cy (21, ¢), Coa(z1,¢))
is orthogonal to the tangent line of S+( ) at (ml, Xo(xq)). Therefore, it is also or-

thogonal to the tangent line of C;(c ( ia(x1,¢), Cialxy, )) with i = u, £. O

Lemma B.4. Let r > ¢, 0 = (61,02) € S5 (7).

1. If 0, ¢ (—a%, %), there exists (z1,2") € OB ((61,62),7), (z1,35) € Cu(r,0)

such that xél) > xf).

2. There exists (xl,xz ) € 0B ((61,62),7), (xl,xg)) € Cy(, ) such that xé ) < :céQ).

3. Ifr < 2(11+; 0, € (—x¥, %), then

d(0,Cu(c)) = d(0, K), with K in (B.3).

4. Suppose p =0, T < 2(11+; 0, € (—z%,x7), andr e (c, 77(01)). If

(C&l(xh c), Cea(z, C)) edB(0,r),
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then Cya(xy1,c) < 0.

Proof. Prove 1. Let 1 = Cy,1(601, ¢) and xg) = Cy2(61, ¢). By construction, (x4, xéQ)) €
Cu(7,¢) and d(@, (xl,xg))) = ¢ < r. In addition, there exists xy large enough
(1) (2)

such that d (6, (z1,22)) > r. By continuity, there exists x5’ € (x5 ,z5) such that
d (6, (21, xg))) =7
The proof of 2 is an analog of 1.
To prove 3, let z ¢ (—xf,2F). The distance between § and (Cy,1(z1,¢), Cupo(21,¢)) €
Cu(c) is

h(x1> = (C%l(ilfl, C) — 91)2 + (C%Q(ilfl, C) — Xg(el))2 .

Taking the first order derivative

dh(.%'l)
dl’l

= (1 — 0y) (((1 + p)T +2(1 — p)x%)?)/z —c(1 - pZ)T)

2((1—p)2z1 (21+61)+(1—p2) 22 +(14p)T+( 1+p)\/(1fp)x%+7\/9%(1fp)+'r)

X .
o)/ (1=p)3 (o) r+2(1-p)a?) ™ (N4 (1= p)aF +/03(1=p) 7

Note that (i) |z1] = 2f = |61] thus 1 (z1 + 61) = 0; (ii) T < @ thus

3/2 3/2

(A+p)T+2(1—p)a)”" —c(1—p*)7 = (1 + p)7 +2(1 — p)z?)"" —c(1—p*)7T = 0.

£ dh acl) dh(z)

Therefore, the sign o is the same as (z1 —#0;), and thus <Oforz < —2af <

0, and %Ef) > ( for z > ZL‘l > 0. Hence, h(x) is minimized at z7, i.e. point H.

To prove 4, by contradiction, assume that there exists A = (Cy1(z1),Cra(z1)) €
0B ((01,92),7’) and Cya(z1) = 0. WLOG, assume that Cyq(x1) = 0. Since Cpa(x1) is

. . . c2(p+1)2—(p+1)1
increasing in x1, and Cy ( (ot —(pt D7 ) _ 0, we have

V2y/1-p

_vea —(+or _ .
fﬁ =

Let A" = (Cy1(z1),Cyua(z1)). By Lemma B.3, the perpendicular bisector of AA’ is
tangent of g (7) at (w1, Xa(x1)). Since 8 (7) is convex, 6 is above the perpendicular
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bisector. This further implies that
r=d(,A) > d(G,A') .
However, by Lemma B.4.3, we have
d(0,A") = d(6,K) =7(6),
which is a contradiction. Therefore, such z; does not exist. O

Lemma B.5. Let r > 0. Sy (7) intersects 0B ((61,X2(61)),7) at a minimum of two

points.

Proof. Let h(x;) be the distance between (z1, Xa(x1)) € S (1) and the center of the
circle (01, 02) = (61, X2(0y)), i.e.

h(zy) = (11— 01) + (Xa(21) — Xo(64))”
(Vi = —vr (=)

_ —6,)2.
1+p +(x1 1)

It is easy to see that h(6;) = 0, h(—o0) = o and h(+00) = . Since h(z;) is a

continuous function, there exists xgl) <6 < :1052) such that

h(zV) = h(t?) =12

Thus S (7) intersects 0B ((61,65),7) at (:pgl),Xg(mgl)D and <LU§2),X2(ZE§2))>. O

Lemma B.6. Let 7 < (1;5?;82, with p = 0. Suppose |r1| < xf and let O =
(1, Xo(21)) € So(7). Define C; = {(x1,2) : (21, —12) € Cj(c)} where j = L,u, C;
is defined as in Lemma B.2. For allr < 7(xy), let (:cgl), 0), (x?), 0) € 0B(O,r). Then
V2q/c2(p+1)—T

2. If (z1,22) € dB(O,r) nC,, then x5 = 0. Moreover, 0B(O,r) nC, = .

1. max{|x§1)], |x§2)\} < Iy =

Proof. Proof of Part 1. WLOG, assume zgl) > 0. Let k = Y2y elzp)tr \;21(172p)+7 be the vertical
—p
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axis of K. Let

7)) = |0 = (21,0)]* — |0 - K|
= (T1 —21)* + Xo(21)? — 27 — (k — X2($1>)2.

It suffices to show that h(a:gl)) > 0. Note that

1/2

ah($1) _ 2\f<(1+p) (1— p)( (1— p)+7’)(7+(1 p)x ))_ ﬁ(w)
5561 <c2(1 p-‘r’r)a:l(l p)-‘r\/(l-i-p ct(1—p?)+2c2pT—1 )\/m !

h( ) 2(1-p) (C 7(1=3p) + 72 — 2¢* (1—p)p) 2 — (1 +p) (04(1—/)2)+262p7'—7'2) -

The sign of ah(“ depends on A(z;). Observe that

h(0) = —(1+p) (¢* = (1= pc?)*) 7 <0

< (1-p?
1+p

where the inequality follows from 7 < < (1 + p)c*. Moreover

h(z}) = =21 = p)p (1 — A (p — 1))2 <0.

Since h(z1) is monotone in x; for z; > 0, we have

h(z1) < max {h(O), h(xj)} <0.
Thus h(x;) decreases in xq, and h(:vgl)) > 0 follows from

h(x1) = h(xy)
_ 8(34p2(1 _ p2)—1 - 0
A1+ p2) = (14 p)7 +4/(p+ 1) (1 + ) = T)W/ET = )2 = (o + )7

Proof of Part 2. We can verify that (z;,0) € C,. Moreover, for all (z,22) € C,,
if z5 < 0, then |z1] > Z;. By Part 1, such points cannot lie on dB(O,r). Finally,
0B(O,r) n C, because

d(0,C5) > d(0,C,) = d(0,K) = i(x1) > r.
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The inequality from the symmetry of C, and C, about the x;-axis, combined with

Xs(z1) > 0. The equality follows from Lemma B.4.3. O
OGn 19* n) %Gn(9u,n

Lemma B.7. Suppose 9,, — O., and g, satisfies (i) < ( =0, (i) %19(619/ — H

with a full rank H, (iii) aagg 5 1s Lipschitz continuous in 19 with Lipschitz coefficient

M e Ry for all ¥ € B(,,€) where e > 0. Let Z ~ N(0,14) and Z,, = Z + o,(1). Let
by =10 (0 — Osp). If limy, by, = h € R, then

TV =17W 1 0,(1),

n

T = inf 1Z,, = (z = n)|*, TW = inf  |Z—(z-n)".
Gn (O ntrr ta)=gn (9n) 2'Hx=h'Hh

Proof. Let x*, x* € R* be minimizers of 7V and T, respectively. Standard quadratic

arguments imply =%, z* = O,(1).

Step 1. Prove T < TV + 0p(1). By feasibility of x},

Gn (Vs + r_lx*) = (V) = gn(Oen + 1, hy)

~ —1 agn(ﬂ*,n) —2 >l</a gn('ﬂ) * = —lagn(ﬁ*n —21./ 9? Jn '19)
In (D) + 1 Zageay + v wy Sisgan = Gn(Ven) + vy =55 he + 17 hy 5585 hay
%1 0% (9) ¥ = B 3%Gn(9)
= T Zgeg Tn = M agsgr n

where ¥ is between Vi and U, ,, + 1, Lz* and ¥ is between Vo and Uy, + 1, 'h,. By
Assumption 4.1.1,

a¥ [H + o,(1)] 2t = (h+0(1)) [H + 0,(1)] (h + 0(1))
= ¥ Ha! = W Hh + o0,(1). (B.13)

Case 1. W"Hh = 0 and H is positive/ negative definite. (B.13) implies 27 = o0,(1).
Hence
<|Z +hl* = TV + 0,(1).

For Case 2 and Case 3 below, we construct &% = z¥ +0,(1) such that 2}’ Hz} = h'Hh.
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It then follows that
ey o 2 _ * 2 — 7@
TW < |Z — (&5 = h)|" = |Zn — (2} = )| + 0p(1) = TV + 0,(1).
Case 2. W Hh = 0 and H is indefinite. By Lemma B.13, there is y, such that
oy Hy, =0, y,Hy, = —sign(z} Hz}).
Let &% = x} + &,yn, where &, = /|2 Ha¥|. By (B.13), &, = 0,(1). In addition,
Ty Hiy = (x5 + &ayn) H (7, + &) = 23 Hayy — sign(ay) Hayy )6 = 0.

Case 3. WHh # 0. Let (1+¢,)? = 2HL By (B.13), &, = 0,(1). Let 3 = x* +&,27%.

o Hak
By construction, ' Hz} = h'Hh.

Step 2. Prove T\ < T + 0p(1). Case 1. Hh = 0 and H is positive or negative
definite. Here x* = 0 and T' = Z'Z. Thus,

T < Z? + 0p(1) = TV + 0,(1).
For Case 2 and Case 3 below, we show that there exists 7, = 0,(1) such that
Gn(Dun + 172"+ 10) = Gu(Vn).
Then the conclusion follows from
TV < |Zy — (% + 50— Ba) [ = |Z — (2% = B)|* + 0,(1) = T® + 0,(1).

Case 2. WHh = 0 and H is indefinite. Assume H = diag {1, ..., A\n, —Ami1s -y —Ad}
with Aq,..., Ay > 0. If H is not diagonal, write H = P’AP with diagonal A and

transform x* by Px*. Define

y* = —sign (Gn(Vup + 1, 2%) = Gu(00)) (2, ..y 2y, =28y, o, —h).
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Then
d
y"Hy* = 2V Ha* = 0, y"Ha* = —sign (G, (Van + 1, '2%) — §u(9,)) Z P
i—1
Let
un(€) = 12 (G (o + 110" + €57)) = Guln))
Define

&, = argmin|¢| s.t. u,(§) = 0.
3
We show &, = 0,(1). Note that
n(0) = 72 (Gn (Du +72157) = Gul00))

and for all € > 0,

d
un(€) = 2ey™Ha* + 0,(1) = —2esign (u,,(0)) Z Nai? + o,(1).

=1

By Lemma B.10, there is N such that for all n > N,
P(|&] <€) = P (un(€)un(0) <0) =1 —¢,

which implies that &, = 0,(1). Let n, = &,y*, the conclusion follows.

Case 3. Hh # 0. Define

&, = argmin [¢] s.t. 72 (Gu(Dan + (L + 1, '2%) — G2 (9,)) =0,
13

and &, = oo if no solution exists. We show &, = 0,(1), i.e. for all € > 0, there is N
such that for all n > N P (|&,] > €) < e. To see this, let

Un (&) = 75 (Gn(Fa + 17 (1 4+ )2*) = Gu(0)) -
Then

un(€) = (L +€)? = 1) WHh + 0,(1), un(—€) = ((1 —€)*> = 1) h'Hh + 0,(1).
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Therefore, there is N such that for all n > N,
P (up(€)un(—€) <0) =1 —e.

By the continuity of u,,, {un(e) > 0 and u,(—¢€) < O} implies |,| < e. Therefore, for
alln > N,
P(&] <€) = P (un(e) > 0 and u,(—€) <0) > 1 —e.

The conclusion follows from 7, = &,x*. O

Lemma B.8. Suppose Assumption 5.2 holds. Let Z ~ N(0, 1) and Z, = Z + 0,(1).
Suppose ¥, = ¥ + 0,(1) with ¥ € S, where S is defined in Assumption 4.1.5. If
lim s, (6, — 0,) = h € R with W"H # 0, for some sequence s,, — o with s,/r, — 0,
then
T =7® 1 0,(1)
where
2
T = inf :

9(On+ry ' 2)=g(0n)

2
T® = inf Hzfz—l%H. (B.14)
h! Hx=0

L — z;l/%‘

Proof. Let z} and z* denote the optimizers of 7% and T® | respectively. It is easy
to verify that x}, 2* = O,(1).

Step 1. Prove T® < T 4 0,(1). Let 6% = 6, + r'a*. By the feasibility constraint,

n

0 =s,1n (9(02) - g(en)) :

Expanding ¢(6%*) around 6, using a second-order Taylor expansion, and linearizing

Vg(6,) around 6,, we obtain

0 =87 (ag (6n) 0 —0,) + (0% — 0,720 (6) (0% — en))

o0 " 0000’ "
- o9(0) Sn ,09(0) .
=5,(0, — 6*)&089’rn<0" —0,) + rnrn(en —0,) aea@/rn(ﬁn —0,)

2, 09(0) o sn ,,09(0)
=l Ge0en T T T Gaoa e

=h'Hz} + 0,(1). (B.15)
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where @ is between 6,, and 0% and 0 is between 0, and 6,. Since h'H # 0, there is ¢
such that h'H. = 1, and a,, = 0,(1) such that

h' H(zk + ane) = 0.
Thus ¥ + a,¢ is feasible for the problem in 7 which implies that

2
T® < HZ CS (g anb)H —T® 4+ 0,(1).

Step 2, we show that 7, < T +0,(1). By the same algebra in (B.15), for b = O,(1),
ST (g(@n +or (b)) — g(@n)) = W' H(z* + b) + 0p(1) = b+ 0p(1),
where the last equality follows from h'Hx* = 0. Define b,, as the solution for

b, = argmin |b] s.t. g(0, + 7, (z* + b)) — g(6,) =0,
b

and b, = o0 if there is no solution for g(6, +r,*(z* + b)) — g(,) = 0. Next, we show
that b, = 0,(1), i.e. for all € > 0, there is N such that for all n > N, P(|b,| > €) <.
Let

Un(b) = SpTn (g(@n + otz b)) — g(@n)) )

Then
un(€) = € + 0,(1), u,(—€) = —€+ 0,(1).

Therefore, there is N such that for all n > N,
P (un(€)up(—€) <0) =1 —e
This implies that

2
+0,(1) = TP 4 0,(1).

1o &

o — SV (0" an)H )Z 2y

Step 1 and 2 complete the proof. n

Lemma B.9. Suppose Assumption /.1.5 and J.1/ hold. Let h,, and s, be Sequences
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such that s, — o, ||hn||/sn 2 b # 0, and HZ”HH L 1. For T*(h) defined in (}.])
with Z ~ N(0, 1), it holds that

T (hy) = mf HZ 12 H + 0p(1).
Proof. Let z =t — h,,, we can rewrite T*(h,,) as

. _
T (hy) = h/Hmf o
. _

Nanll™ 2[hnll

7. — (2)—1/235“2 | (B.16)

Note that the optimizer =¥ = O,(1), thus

/H x*/Ha;.*
hal = | —4— + 0(1)) zy = ————=" 4+ 0,(1) = 0,(1)
<Hh | 2| ha|

where the last equality follows from izn/ $p 2> b # 0. The remainder follows by the

same continuity and perturbation arguments as in Lemma B.8. O

Lemma B.10. Let ¢, = 0,(1), X ~ N(h, I;) with h € RY, and let x* be the solution
to

/glf_OT(x), where T(z) = |X — z|?,

where H = diag{\1, ...; Ay —Ami1, ., —Aa} with \; > 0. Then for all € > 0, there is
N such that for all n > N,

d
EZ)\ix;"2+5n>O >1—e

i=1
Proof. Step 1. Let {1 = & +>\ , Uy = 4/1 — (3. Then
. < . _ B 2
I/}II;fZOT(x) zlxl—ezxdlfof, o T(x) =T(0) — (£2Xy + 64Xy)

By the continuity of 7'(z), for all € > 0, there is C. > 0 such that

d 2
1 e
k2 < — -z 4 =
iil)\wl <C.|<P (T(O) x/;ﬁfZOT(:p) < <(I> (2 + 4)) )
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<P <(€2X1 L 0X,)? < (@1(% + §)>2> .

Since (X + 01Xy ~ N (€ohy + £1hg, 1), the squared term follows a noncentral x?, so
the probability is bounded by €/2.

Step 2. Since €, = 0,(1), there is N such that for all n > N,

Pleg=-9)21-¢
> 2

Combining with Step 1,

d d
Pledxai®+e,>0|=P | > \af® > Coocp > —

i=1 1=1

O

Lemma B.11. Let D(Y) = inf . pye—c |Y — x| where Y is continuously distributed
and ¢ = 0. Then D(Y') is continuously distributed.

Proof. 1t suffices to show that foralla > 0, P (D(Y) = a) = 0. Let S = {z : 2’Hz = c}.

Case 1. a = 0. Here P(D(Y) =0) = P(Y € S). Since H is indefinite, S is a variety
of dimension at most d — 1, and hence S has Lebesgue measure zero. Because Y has

a continuous distribution, so P(Y € S) = 0.

Case 2. a > 0. Suppose, by contradiction, that P (D(Y) = a) > (0. Then the set
Se = {y : D(y) = a} must have positive Lebesgue measure. Since D(y) is continuous
in y, S, is a closed set. Hence, there exists a ball B(o,r) with a > r > 0 such that
B(o,r) € S,. Let o be the projection of o onto S, i.e. o € S and ||o — || = a.

Choose a point k € 0B(0,7) n 0od’. Such k exists since o lies inside 0B(o,7) while o’
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lies outside. By construction,
Ik =dl[=llo=0dl[=llo=kl|=a—-r<a

which contradicts the fact that k € B(o,7) < S,. Therefore, no such ¢ > 0 can
exist. O

Lemma B.12. Let Z ~ N(0,1;), and H, be a set satisfying P(Z e H.) = 1 —n.
Then

. 1—-a
Q (h}gjo |1Z — 2| Z € H; E) e [Q0d.1-a), QUi 1—a+1).

Proof. To show the upper bound,

P (,}nfo 1Z - 2" <Q(xi 1 —a+ n)‘ Ze ’H>

P (infh/zzo IZ - 2> < Q(x31—a+7),Ze ’H)

P(ZeH,)

P (infyamo |2 — 2’ < Q04,1 - a+ ) + P(ZEH.) — 1
~ P(ZecH,)
l—a+n+1l-n—-1 1l-«

B 1—17 C1-n

To show the lower bound,

P <f |7~ 2l < Q4.1 - a)

ZEHZ)

P (infh/xzo 1Z — 2|2 < Q03,1 —a), Z e 7{)

~

P (infh/xzo HZ - 37H2 < Q(X 1= CY)) l—«o
P(ZeH,)

]

Lemma B.13. Let H be a d x d full rank indefinite matriz. For all d x 1 vector z,
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there exists d x 1 vector y such that y Hx = 0 and y'Hy = —sign(x’Hz).

Proof. If x’ Hx = 0, the conclusion holds trivially with y = 0. WLOG, assume that
2’Hx > 0. First assume that H is diagonal. If not, write H = P'AP, where A is
diagonal, T = Px and y = Py; the same argument then applies. Without loss of
generality, let

H = diag(A 1, oo, Ay = Aty oo =Ad)s - Ay ooy Ag > 0.

Case 1. If zpy1,...,zqg = 0, let y = (04_1,1). It is easy to verify that y'Hx = 0

and yHy = —)Ag < 0. Case 2. Suppose z4 # 0, let y = (21,...; Tm, 0g—m—1, Ya),
Yqg = —Z%;:j‘;x? Then

2;11 )‘ix?

/ — . 2 — — . 2 —_
yHr = 2 AN — ATy = 2 N — AaZq S

i=1 =1

=0,

i=1

i=1 Aag
"o\
Then conclusion holds with a simple normalization of . O]

References

Abowd, J. M., F. Kramarz, and D. N. Margolis (1999). High wage workers and high
wage firms. Econometrica 67(2), 251-333.

Alan, S., S. Ertac, and I. Mumcu (2018). Gender stereotypes in the classroom and
effects on achievement. The Review of Economics and Statistics 100(5), 876-890.

Andrews, I. and A. Mikusheva (2016). A geometric approach to nonlinear econometric
models. Econometrica 84(3), 1249-1264.

Andrews, I. and A. Mikusheva (2022). Gmm is inadmissible under weak identification.
arXiv preprint arXiw:2204.12462.



REFERENCES PAGE 65

Benkwitz, A., M. H. Neumann, and H. Liitekpohl (2000). Problems related to con-
fidence intervals for impulse responses of autoregressive processes. Fconometric

Reviews 19(1), 69-103.

Bickel, P. J., C. A. Klaassen, P. J. Bickel, Y. Ritov, J. Klaassen, J. A. Wellner,
and Y. Ritov (1993). Efficient and adaptive estimation for semiparametric models,

Volume 4. Springer.

Card, D., J. Heining, and P. Kline (2013, 05). Workplace heterogeneity and the rise
of west german wage inequality®. The Quarterly Journal of Economics 128(3),
967-1015.

Chen, Q. and Z. Fang (2019a). Improved inference on the rank of a matrix. Quanti-
tative Economics 10(4), 1787-1824.

Chen, Q. and Z. Fang (2019b). Inference on functionals under first order degeneracy.
Journal of Econometrics 210(2), 459-481.

Cohen, J., P. Cohen, S. G. West, and L. S. Aiken (2013). Applied multiple regres-

sion/correlation analysis for the behavioral sciences. Routledge.

Drton, M. and H. Xiao (2016). Wald tests of singular hypotheses. Bernoulli 22(1),
38-H9.

Dufour, J.-M., E. Renault, and V. Zinde-Walsh (2025). Wald tests when restrictions
are locally singular. The Annals of Statistics 53(2), 457-476.

Dufour, J.-M. and P. Valery (2016). Rank-robust regularized wald-type tests. Tech-

nical report, Working paper.

Fang, Z. and A. Santos (2019). Inference on directionally differentiable functions.
The Review of Economic Studies 86(1), 377-412.

Gaftke, N., B. Heiligers, and R. Offinger (2002). On the asymptotic null-distribution
of the wald statistic at singular parameter points. Statistics € Risk Modeling 20(1-
4), 379-398.

Gaftke, N., R. Steyer, and A. A. v. Davier (1999). On the asymptotic null-distribution
of the wald statistic at singular parameter points. Statistics & Risk Modeling 17(4),
339-358.



REFERENCES PAGE 66

Ganics, G., A. Inoue, and B. R. and (2021). Confidence intervals for bias and size
distortion in iv and local projections-iv models. Journal of Business € Economic

Statistics 39(1), 307-324.

Gospodinov, N. (2004). Asymptotic confidence intervals for impulse responses of

near-integrated processes. The Econometrics Journal 7(2), 505-527.

Hawinkel, S., W. Waegeman, and S. Maere (2024). Out-of-sample r 2: estimation
and inference. The American Statistician 78(1), 15-25.

Hillier, G., K. J. van Garderen, and N. van Giersbergen (2024). Improved tests for
mediation. arXww preprint arXiw:2403.02144 .

Hirano, K. and J. R. Porter (2012). Impossibility results for nondifferentiable func-
tionals. Econometrica 80(4), 1769-1790.

Inoue, A. and L. Kilian (2002). Bootstrapping smooth functions of slope parameters
and innovation variances in var(co) models. International Economic Review 43(2),
309-331.

Kaji, T. (2021). Theory of weak identification in semiparametric models. Economet-
rica 89(2), 733-763.

Le Cam, L. (1960). Locally asymptotically normal families of distributions; certain
approximations to families of distributions and their use in the theory of estimation
and testing hypotheses. Technical Report 2, University of California, Berkeley,

Department of Statistics.

Le Cam, L. (1970). On the assumptions used to prove asymptotic normality of
maximum likelihood estimates. The Annals of Mathematical Statistics 41(3), 802
828.

Le Cam, L. (1972). Limits of experiments. In Proceedings of the Sizth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1, pp. 245-261.

University of California Press.

Liitkepohl, H. (2013). Introduction to multiple time series analysis. Springer Science
& Business Media.



REFERENCES PAGE 67

Mikusheva, A. (2012). One-dimensional inference in autoregressive models with the

potential presence of a unit root. Econometrica 80(1), 173-212.

Miller, D. L., F. Molinari, and J. Stoye (2025). Testing sign congruence between two

parameters. Journal of Applied Econometrics.

Ober-Reynolds, D. (2026). Robustness to missing data: breakdown point analysis.
Journal of Econometrics 253, 106151.

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural
equation models. Sociological methodology 13, 290-312.

Staiger, D. O. and J. H. Stock (1994). Instrumental variables regression with weak

Istruments.

Stock, J. and M. Yogo (2005). Testing for Weak Instruments in Linear IV Regression.
New York: Cambridge University Press.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge: Cambridge Univer-
sity Press.

van Garderen, K. J. and N. van Giersbergen (2022). On the optimality of the Ir test
for mediation. Symmetry 14 (1), 178.

van Garderen, K. J. and N. P. van Giersbergen (2024). A nearly similar powerful test

for mediation. Review of FEconomics and Statistics, 1-26.



	Introduction
	Literature Review

	Overview and Examples
	Impossibility Results
	Preliminaries
	Analysis in the Limiting Experiment
	Hypothesis Testing and Infinite Dimensional Models

	Minimum Distance Based Inference
	Two-Dimensional  and Indefinite H
	General Cases

	Simulation
	Empirical Application
	Conclusion
	Proofs and Supporting Results for Section 3
	Proofs for Section 4
	Proofs of the Main Theorems
	Lemmas


